自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 【Java-JMM】Happens-before原则

如果 A happens-before B,且 B happens-before C,那么 A happens-before C。线程 A 中调用线程 B 的 start() 方法之前的所有操作,happens-before 线程 B 中的任意操作。根据线程终止规则:子线程 B 的 var = 66 happens-before 主线程 join() 之后的操作。线程 B 中的所有操作 happens-before 线程 A 中调用 B.join() 方法成功返回后的操作。// 构造函数中的写入。

2025-12-21 15:04:46 278

原创 【打造自己的 DeepSeek】第 1 期:为什么要打造自己的 DeepSeek? _

这个需求比较小众,大体就是一些知识记录者不想将这些知识放在网上,但又希望能快速检索自己知识库的内容,甚至能根据自己整理的知识进行分析,使用 AI 大模型是比较方便的方法,但公网的 DeepSeek 显然是不适合的。DeepSeek 是放在公网上的,意味着所有向 DeepSeek 的提问都有被记录的可能,如果涉及一些安全密级较高的数据或者特别隐私的信息,直接在网络上提问是有风险的。公版的 DeepSeek 是满血版的,非常强大,但它的功能都是设定好的,能回答的问题也是规定好的,有些敏感问题它是回答不了的。

2025-12-21 15:04:04 279

原创 用 .NET 最小化 API 构建高性能 API | 葡萄城技术团队

本文将深入探讨如何利用.NET 中的最小化 API 架构构建高性能 API,通过简洁的代码示例和实用建议,帮助开发者掌握这一现代 API 开发方法。最小化 API 是使用 ASP.NET Core 构建 HTTP API 的一种轻量级方式,它摒弃了传统的基于控制器的结构。异步操作通过在 I/O 等待期间释放线程,显著提高了系统的并发处理能力,使 API 能够用更少的资源服务更多的用户。对于非常复杂的大型企业应用,特别是需要完整 MVC 功能的场景,传统的基于控制器的方法可能仍然更适合。

2025-12-17 19:50:52 245

原创 Shopee 验证码解决方案

可搭配我们的代理网络与 Puppeteer、Playwright 及 Selenium 一起使用,以最大程度降低验证码的出现。Bright Data 的验证码解决方案已内置于 Scraping Browser 与 Web Unlocker 中,实现验证码处理的自动化。ight Data 的验证码解决方案是 抓取浏览器 和 网络解锁器 的内置功能,为应对最复杂的验证码挑战提供完整解决方案。利用先进的 AI 逻辑自动检测、分析并解决验证码,支持重试、指纹识别与请求头优化等强大功能,应对各类复杂反爬机制。

2025-12-17 19:49:32 781

原创 MAF快速入门(6)混合编排工作流

这是一个内容审核管道工作流,假设我们提供了一个AI对话服务,我们需要针对用户给出的对话内容或者提示词做检测,如果检测到提示词越狱(Jailbreak)就输出指定回复而不再继续;Executor和Agent的应用场景在实际业务场景中,Executor通常用来覆盖确定性的业务逻辑,例如:数据验证、数据格式化、数据清洗和计算等等,这类场景往往需要100%确定性。而Agent则用来覆盖AI智能决策的场景,例如:智能判断、理解 和 内容生成等等,这类场景通常需要基于模型能力,具有一定的不确定性。

2025-12-15 13:19:57 229

原创 别再说 WinForm 做的工业软件丑了!这些开源库让它颜值拉满、交互流畅

此时,第三方 UI 库就成了绝佳的"中间方案"——它们在不改变 WinForm 核心架构的前提下,通过重绘控件、引入主题系统、优化布局逻辑等方式,让老框架焕发新面貌。ucBtnsGroup2.DataSource = new Dictionary<string, string>() { { "1", "河南" }, { "2", "北京" }, { "3", "湖南" }, { "4", "上海" } };选型建议:没有"最好"的 UI 库,只有"最合适"的方案。// Theme 属性用来设置整体的主题。

2025-12-15 13:19:07 271

原创 AI编程助手:Aider使用手册(中文版)

随后,Aider 会向“编辑器模型”发出另一项请求,要求其根据架构师的建议,生成具体文件编辑指令。对于这类模型,采用架构模式搭配专门负责生成文件编辑指令的编辑器模型,往往能取得比单纯使用代码模式更好的效果。待Aider完全理解你的需求后,再切换到“code”模式,让其开始编辑你的文件。与Aider的所有功能一样,你可以在现有仓库中使用语音编程,也可以用它开始新项目。目前尚不清楚它们对 aider 最新版本的跟踪情况,因此最好在终端中运行最新的 aider 并与编辑器一起使用 --watch-files。

2025-12-14 11:17:48 795

原创 MySQL篇(为啥会有非关系型数据库?MySQL的数据存储一定在磁盘吗?)

虽然大多数情况下,MySQL使用InnoDB或MyISAM等存储引擎将数据存储在磁盘上(如.ibd或.MYD文件),但它也支持MEMORY存储引擎,允许将数据完全存储在内存中,从而获得极快的查询速度。使用MEMORY存储引擎时,数据仅存在于内存中,重启MySQL服务后数据会丢失,因此它适用于临时数据或缓存场景,而非持久化数据存储。这不是数据存储在内存中,而是数据在磁盘上,部分数据被缓存在内存中以提高性能。例如,Redis 等内存数据库可以将数据存储在内存中,从而实现极快的读写速度。

2025-12-14 11:16:42 343

原创 从零开始学Flink:事件驱动

Apache Flink 为此提供了强大的 ProcessFunction 家族(KeyedProcessFunction、CoProcessFunction、BroadcastProcessFunction 等),它们在算子层面同时具备“事件处理 + 定时器 + 状态”的能力,是构建复杂流式应用的核心基石。在流处理场景(无界数据)中,常用“有界乱序”策略。在 onTimer 中被调用。Watermark:推进事件时间的“时钟”,只有当 Watermark 超过某个时间点时,对应的事件时间定时器才会触发。

2025-12-13 18:19:52 425

原创 记录一次USB虚拟网络问题排查

这几个符号都来自linux kernel 驱动代码,具体在kernel/drivers/net/usb/usbnet.c,由CONFIG_USB_USBNET决定是否编译,但是在我的自己的defconfig中CONFIG_USB_USBNET已经被显示设置为y了。阅读源码,Kconfig并没有提及CONFIG_USB_USBNET是否有依赖项,查看代码CONFIG_USB_USBNET实际是属于CONFIG_USB_NET_DRIVERS的一个子模块,所以尝试也配置。由于qxdm log在该目标机上受限。

2025-12-13 18:19:02 237

原创 【光照】UnityURP为什么要[Gamma矫正]?

伽马校正是对颜色值进行非线性变换的过程,其核心是通过幂函数(γ函数)调整亮度值,使人眼感知更均匀。数学表达式为:输出 = 输入^γ,其中γ=0.45用于编码(sRGB到线性空间),γ=2.2用于解码(线性空间到sRGB)。‌存储优化‌:8位色深(0-255)下,通过伽马编码为暗部分配更多值域,亮部分配较少值域,更符合人眼感知特性。‌显示一致性‌:补偿早期CRT显示器电压-亮度非线性关系(γ≈2.2),现代显示器通过硬件模拟保持兼容。‌渲染准确性‌:在线性空间计算光照和混合(如PBR),避免亮度计算错误。

2025-12-12 11:56:42 685

原创 DAPO浅析

然而在训练long-cot的reasoning模型时,其目标是为了提升模型的能力(math、推理、code等)训练前后的模型分布可以是显著不一样的,KL惩罚项可能会限制模型的探索新知识的能力,因此去除。但是DAPO认为长度越长的sample的贡献度越大,因此过长的sample是对的会重点强化(提高概率),但是错了的话,会重点惩罚,从而减小错的长response的概率,即。同时,实验也验证了上面发现的问题。是在A<0的sample起作用,若重要性采样的比值很大,并不会对A<0的token进行裁剪。

2025-12-12 11:55:36 282

原创 [PBR][环境光]实现方法解析

Unity URP的环境光实现方案在保持实时性能的同时,通过精心设计的混合策略提供了足够高质量的全局光照效果,特别适合需要跨平台部署的项目。随着硬件发展,URP也在逐步引入更多实时全局光照技术,如Enlighten和GPU Lightmapper的集成,但核心的环境光处理架构仍保持这一基本设计理念。URP混合方案 中 中 ★★★★☆ ★★★★☆。球谐光照 极低 极低 ★★★★★ ★★☆☆☆。反射探针 中-高 中 ★★★☆☆ ★★★★☆。SSR 低 高 ★★★★☆ ★★★★☆。

2025-12-11 11:09:55 294

原创 推荐系统中损失函数梳理:从Pointwise到Listwise

具体配置:预训练阶段以用户行为序列为正样本对(例如同一session内的物品或连续点击的物品),批内其他样本为负样本,使用InfoNCE训练物品向量。预训练完成后固定物品向量(或使用小学习率微调),在有标注的下游任务上训练用户塔和输出层。实施要点:预训练的目标是学习通用的物品表示,应使用多样化的正样本对构造方式(共现、序列、时序相邻等),避免过度偏向某种特定模式。另一个实践经验是:主任务(业务最关心的指标)的权重应始终最大,辅助任务的权重不宜过高(通常主任务权重占总权重的60%以上),避免主任务被稀释。

2025-12-11 11:09:19 706

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除