- 博客(14)
- 收藏
- 关注
原创 从零开始: C#轻松预览PDF文件-支持跨平台AOT友好
PDFium是基于由google维护的项目 (https://github.com/chromium/pdfium) (Apache-2.0 license),维护很频繁(本文发出前2小时Pdfium仓库还在更新),此外他的特点是采用动态链接库,C++编译体积很小5mb,兼容性较好,接口规范而且功能强大。为了更加通用,我们对PdfiumViewer中依赖WPF的代码进行了删减,主要包括书签相关的对象,滚动面板及动态渲染等,最后留下的只有指定PDF页渲染图片的功能。Pdf的预览主要是由解析+渲染两部分实现。
2025-12-21 14:59:44
643
原创 Spring Boot快速集成MiniMax、CosyVoice实现文本转语音
此时就比较推荐使用 MiniMax、CosyVoice这些提供的音色,这些音色的效果会更加拟人、逼真,接近真人发音。这里依然通过 UnifiedTTS 的统一接口来对接,这样我们可以在不更换客户端代码的前提下,快速在 MiniMax、CosyVoice等引擎之间做无缝切换。通过 UnifiedTTS,我们在 Spring Boot 中仅需调整 model 与 voice 即可切换到 MiniMax、CosyVoice、甚至最强的Elevenlabs,实现文本转语音。
2025-12-21 14:59:07
581
原创 GPUStack v2:推理加速释放算力潜能,开源重塑大模型推理下半场
GPUStack v2 的目标,是提供一个高性能、可管理、可扩展、可观测的 MaaS 平台,帮助企业在多样化硬件与业务场景下,稳定、高效地运行大模型推理服务。无论是 vLLM、SGLang,还是其他新兴或传统 AI 推理引擎,GPUStack 都能轻松兼容,并支持任意引擎版本的灵活切换与异构环境下的智能调度,确保用户始终能在第一时间使用最新的开源模型与推理优化成果。GPUStack v2 提供端到端可观测能力,将模型运行状态、调用情况与底层算力资源统一管理,实现可量化、可追踪的推理服务。
2025-12-17 19:42:58
928
原创 FastAPI 流式响应中,如何优雅处理客户端断连后的数据库操作?
原因:当客户端断开时 ,FastAPI 会立即把它的 session连接回收掉,底层的那个物理连接被标记为 Cancelled,然后执行finally的时候,再往下传原来session连接就不对了,save_conversation函数就会抛pymysql.err.InterfaceError。一个自然的想法是:既然旧的 session 不能用了,那就在保存的时候检查一下,如果不可用就创建一个新的。或者创建个独立线程,在新线程中去创建新连接,应该是可以的,个人还是感觉比较重,浪费资源。
2025-12-17 19:42:17
303
原创 JSAPIThree 加载 WMS、WMTS 和通用栅格图学习笔记:标准地图服务与切图规则
我的感受:标准地图服务虽然配置有点复杂,但是用起来其实不难。WMTS 是 OGC 标准的 Web 地图瓦片服务,提供预切好的瓦片,性能比 WMS 更好。我的发现:WMTS 的 URL 中可以使用 {z} 占位符,引擎会自动替换为对应的缩放级别。我的理解:WMS 是动态生成地图图片,WMTS 和 XYZ 是使用预切好的瓦片,性能更好。WMS 是 OGC 标准的 Web 地图服务,通过参数化的 HTTP 请求获取地图图片。XYZ 是最通用的瓦片格式,通过 URL 模板直接访问瓦片,支持各种自定义瓦片服务。
2025-12-15 13:14:09
253
原创 物理Data Guard技术深度解析:配置、原理与运维实践
日志传输参数 LOG_ARCHIVE_DEST_1 本地归档日志存放路径 *.log_archive_dest_1='location=/arch/orcl valid_for=(all_logfiles,all_roles)' 主备库均需配置,存放本地归档日志。日志传输参数 LOG_ARCHIVE_DEST_STATE_N 启用/禁用对应LOG_ARCHIVE_DEST_N的传输功能 *.log_archive_dest_state_2='ENABLE' 主库需启用,备库可设为DEFER。
2025-12-15 13:13:31
526
原创 接口开发,咱得整得“优雅”点
/ 签名不参与计算。ok) throw new BizException("IP 不允许访问");产品一句话: “凡哥,接口明天上线,支持 10w 并发,数据脱敏,不能丢单,不能重复,还要安全。上面 13 段核心代码,直接粘过去就能跑,跑通后再按业务微调,基本能扛 90% 的生产场景。log.warn("业务异常:{}", e.getMessage());尤其对外提供的接口,无法保障调用频率,应该做限流处理,保障接口服务正常的提供服务。return Result.fail("访问太频繁,稍后再试");
2025-12-14 11:10:11
335
原创 【URP】Unity[后处理]色调映射Tonemapping
现代优化:Unity URP/HDRP引入Custom模式,支持用户自定义曲线参数(如Toe/Shoulder强度),平衡性能与效果。动态范围压缩:将HDR光照数据(如阳光直射与阴影的极端亮度差)映射到0-1的LDR范围,避免高光过曝或暗部细节丢失。动态范围压缩:将HDR的高亮度值(如>1.0)非线性压缩到LDR的0-1范围,避免简单截断导致的亮部细节丢失。早期算法:如Reinhard算子(全局映射),通过对数压缩保留整体氛围,但局部对比度不足。
2025-12-14 11:09:02
351
原创 实现一个深拷贝函数
答:拷贝,可以认为是赋值,对于 JavaScript 中的基础类型,如 string, number, null, boolean, undefined, symbol 等,在赋值给一个变量的时候,是直接拷贝值给变量,而对于引用类型,如 object, array, function 等,则会拷贝其引用(地址)。浅拷贝(Shallow Copy):仅复制对象的表层属性,若属性值为引用类型(如嵌套对象、数组),则拷贝的是引用地址(引用地址就是表层属性),新旧对象共享嵌套数据。// 方法2:concat。
2025-12-13 18:13:04
755
原创 入门】使用Node.js开发一个MCP服务器(STDIO方式)介绍
当用户请求查询北京天气时,AI会按照MCP标准参数格式组装参数,调用MCP服务器执行相应功能,并处理返回结果。content: [{ type: "text", text: `失败: ${error.message}` }],needShowMeText: z.string().describe("想要展示的话")console.log("MCP服务器已启动并等待连接");console.log("MCP服务器启动中...");"name": "mcp本地测试3","mcp本地测试3": {
2025-12-13 18:12:20
362
原创 深入理解 PHP-FPM 的最佳配置
我不确定是谁开始这么搞的,这些乘数怎么推导出来的,但有一点让我觉得不对劲——把 min_spare_servers 设得比 start_servers 低,如我上面解释的,会导致 min_spare_servers 值永远用不上。如果大量请求涌入,20 个子进程不够用,主进程会生成额外的子进程,最多到 max_children 值,这里是 70。最终得到了一些意外结果。测试表明,当并发请求数量远超 max_children 值,或者远低于 max_children 值时,ondemand 是最佳选择。
2025-12-12 11:47:45
348
原创 彩笔运维勇闯机器学习--孤立森林
类似于随机森林,但每棵树不使用信息增益或基尼系数等指标,而是随机选择一个特征,在该特征的最小值和最大值之间随机选一个切分值,将数据集分成两部分,又在每个部分随机最大值与最小值之间随机选一个切分支,不断递归。contamination用来调节异常比例的参数,如果是auto,那么异常比例为33.3%,6个样本,那么异常点就是2个。首先,每棵树是采用部分的样本来计算,而不是采用所有的样本n=6来计算的。构造如此的树n棵,组成森林,开始计算每个样本在每棵树的平均路径长度(叶子节点的深度depth),计算异常分数。
2025-12-12 11:47:04
514
原创 理解Kubernetes Pod:容器设计的基本单元
如果失败,则容器容器就不能对外提供服务(其实就是自动将该 Pod 从对应的 Endpoints 对象中移除,从而不再将流量路由到这个 Pod,容器的状态为NotReady,对应的pod的状态Ready=False)。node的ip:node的是node对应的物理机(虚拟机,云主机)上的真实ip,比如说,你的一台物理机在公网上,那么这个node的ip便是一个公网的ip地址,我可以在任何地方拿着这个ip连接到这个node上。Running Pod 已经绑定到了某个节点,Pod 中所有的容器都已被创建。
2025-12-11 12:50:15
287
原创 深度学习优化器算法巧思速览
有一个折中的做法,Nesterov momentum,Adam升级为NAdam,它的思路也很简单"先沿惯性走一步,再看新梯度,沿修正后的方向走",也就是从Adam的"看一步走一步"变成了"看一步想两步"。在多年的研发生涯里,对调参这个事深恶痛绝,为什么辛辛苦苦架构出来的模型,一训练就崩,训练收敛慢到龟速,这严重影响了开发进度,并且增加了很多不可抗力的消耗。我相信有很多业内同行,都有这种痛,训练了很久,效果依旧很差,泛化能力也不行,然后就开始苦恼,为什么自己没有足够的钱,足够的算力。
2025-12-11 12:49:10
163
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅