- 博客(8)
- 收藏
- 关注
原创 【Rive】rive-android源码分析
make 函数的源码如下。 5.4.1 节 WorkerImpl::doFrame 函数中,在 prepareForDraw 之后,调用了 m_ktDrawCallback,它指向的是 kotlin 中 Renderer.draw 函数,它是个抽象函数,RiveArtboardRenderer 中实现了该函数,如下。图中,蓝色的类表示 rive-android 中 Kotlin 代码,绿色的类表示 rive-android 中 C++ 代码,橙色的类表示 rive-runtime 中代码(下同)。
2025-12-17 21:04:29
707
原创 Gaia2 与 ARE:赋能社区的智能体评测
作为参考,我们对比了多款开源与闭源的大模型,包括:Llama 3.3-70B Instruct、Llama-4-Maverick、GPT-4o、Qwen3-235B-MoE、Grok-4、Kimi K2、Gemini 2.5 Pro、Claude 4 Sonnet,以及 GPT-5 在不同推理模式下的表现。在理想情况下,AI 智能体应当是可靠的助手。当接收到任务时,它们能够轻松处理指令中的歧义,构建逐步执行的计划,正确识别所需资源,按计划执行而不被干扰,并在突发事件中灵活适应,同时保持准确性,避免幻觉。
2025-12-17 21:03:08
411
原创 人工智能:一分钟将Gemini生成应用部署到本地计算机的保姆级教程
前几篇博客中我们介绍了用gemini3搭建了几个非常有意思的app,但是只在网页上运行肯定是满足不了我们的需求的,这篇博客讲教大家如何把app部署到自己的电脑上(依托于浏览器),可以随时随地打开并且不用担心随时找不到自己做好的应用。这类AI生成的应用不仅展示了大语言模型在代码生成方面的能力,也为开发者提供了快速实现创意的新思路。这个过程涵盖了从环境准备到应用运行的完整流程,适用于大多数基于Vite和React的现代Web应用部署。├── .env.local # 环境变量(需手动创建)
2025-12-15 14:16:13
424
原创 SQL Server 2025 新功能概览
它可以为文本、图像、声音、视频等一切信息,标出一个“语义坐标”,简单来说,就是 AI 用来理解世界的语言。根据微软文档(链接)相比之前提到的PSPO解决数据倾斜导致的参数嗅探问题,OPPO解决的是参数忽有忽无的问题,例如这样一个条件WHERE (ID = @p OR @p IS NULL), 优化器必须为参数P为null时进行兜底,而这种兜底通常落在执行计划上就是一个SCAN,即使参数p有一个高选择性的值也是如此,现在通过OPPO,为这两种情况生成不同的执行计划,避免这种参数时有时无时的性能巨大反差。
2025-12-15 14:15:34
521
原创 Netty/Redis网络模型——IO多路复用原理(操作系统)网络模型
上面我们讲的是网络IO模型,I/O多路复用不是网络模型,是实现NIO的关键技术,依赖操作系统的底层技术,需要依靠操作系统内核,如select/poll/epoll/kqueue,所以不要混淆了,I/O 多路复用不是NIO的优化,只是一种良好的实践。也就是说,当你的IO程序正在等待连接的时候,等待事件到来的过程中,是被操作系统挂起的,处于休眠状态,此时的CPU分片分给了其他程序,如果此时IO程序还有后台任务需要处理的时候,CPU分片也可能正好处于当前程序占用时刻。// 阻塞,等待数据。// 处理完成后移除。
2025-12-14 13:15:13
428
原创 是时候从 MySQL 转到 PostgreSQL 18 了
在 AI 时代,pgVector 扩展特别值得关注,它为 PostgreSQL 提供了完整的向量数据库能力,支持各种向量相似度搜索算法(L2 距离、余弦相似度、内积等),可以直接支持 RAG(检索增强生成)应用,无需部署专门的向量数据库。近年来,随着应用复杂度的增加和数据规模的膨胀,许多基于 MySQL 的系统开始触及性能和维护的天花板。数据库技术革新的浪潮中,PostgreSQL 18 的发布标志着关系型数据库进入了新的时代,它不仅在性能上实现质的飞跃,更为开发者的工作效率带来了巨大提升。
2025-12-14 13:14:28
303
原创 ParameterHandler参数处理机制
ParameterHandler做的就是这个活儿:把 User user = new User("张三", 18)这样的Java对象,翻译成 ps.setString(1, "张三");System.out.println(String.format("参数验证通过: %s = %s", propertyName, value));System.out.println(String.format("参数映射: property=%s, javaType=%s, jdbcType=%s",
2025-12-13 12:50:57
775
1
原创 [python] 代码性能分析工具line_profiler使用指北
函数执行完成后,调用分析器实例的print_stats方法即可输出分析结果。使用line_profiler分析函数运行时间时,如需同时分析其调用的下一层或更深层函数,则需在创建LineProfiler对象时明确指定所有待追踪的目标函数及其子函数。此时,line_profiler会为每个被监控的函数分别生成分析报告,且父函数的耗时统计中将包含所有子函数的执行时间。时间单位(默认自动根据代码执行速度调整),常见的有秒(s)、毫秒(ms,1e-3 秒)、微秒(us,1e-6 秒)、纳秒(ns,1e-9 秒)
2025-12-13 12:50:02
628
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅