首先通过对人工智能相关职业职业要求的了解,明白学习图像识别技术与应用所要掌握的理论知识和实验技能,了解老师的大致讲课范围
其次回顾了人类工业文明的演变,分为四个阶段:
1. 机械化时代(18世纪末):以瓦特发明蒸汽机为标志,工业设备开始取代手工劳动,推动了生产力的飞跃。
2. 电气化时代(19世纪末):爱迪生发明电灯,电力成为生产和生活的主要能源,进一步推动了工业化进程。
3. 信息化时代(20世纪50年代):电子信息技术和自动化技术的兴起,使得信息处理和传播变得更加高效。
4. 人工智能时代(21世纪-至今):智能系统和人工智能技术的广泛应用,标志着人类社会进入了智能化时代。
这一演变过程展示了技术如何逐步从机械化向智能化转变,为人工智能的崛起奠定了基础。
然后说明了人工智能的定义与学科
人工智能是指通过人工方法在机器(计算机)上实现的智能,或者说是使机器具有类似于人的智能。人工智能学科则是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。
最后详细解释了机器学习中的关键组件
PPT详细介绍了机器学习的核心组件,包括数据、模型、目标函数和优化算法:
1. 数据:机器学习的基础是数据,数据集由一个个样本组成,每个样本由一组特征表示。例如,图像数据中的每个像素值都是一个特征。
2. 模型:模型是通过调整参数生成的程序,深度学习模型通常由神经网络组成,能够进行复杂的数据转换。
3. 目标函数:目标函数用于量化模型的有效性,通常通过最小化损失函数来优化模型参数。例如,在房价预测任务中,目标函数可以是预测值与实际值之间的平方误差。
4. 优化算法:优化算法用于搜索最佳参数,梯度下降法是深度学习中常用的优化算法。通过不断调整参数,模型能够逐步提高预测准确性。
这些组件共同构成了机器学习的基础框架,使得机器能够从数据中学习并不断优化。