今天的内容为:图像分割技术与应用,以下是内容总结
1. 图像分割概述
图像分割是指预测目标的轮廓,将不同的像素划分到不同的类别,属于非常细粒度的分类任务。其应用场景广泛,包括人像抠图、医学组织提取、遥感图像分析、自动驾驶、材料图像分析等。
2. 图像分割的前景与背景
- 物体(Things) :可数的前景目标,如行人、车辆等。
- 事物(Stuff) :不可数的背景,如天空、草地、路面等。
3. 图像分割的三层境界
- 语义分割(Semantic Segmentation) :每个像素必须属于一个类别,预测结果为掩膜。
- 实例分割(Instance Segmentation) :预测前景目标的类别属性、边框和个体ID,每个像素可以属于多个ID。
- 全景分割(Panoptic Segmentation) :每个像素点分配一个语义类别和一个唯一的实例ID。
4. 图像分割的数据集
- VOC数据集 :PASCAL VOC挑战赛的数据集,包含4大类、20小类。VOC 2007有9963张图片和24640个目标,VOC 2012有23080张图片和54900个目标。从2007年开始引入了语义分割和实例分割的标注。
- Cityscape数据集 :包含50个城市在春夏秋三个季节不同时间段、不同场景的街景图,共30个类别。包含5000张精细标注的图像(2975张训练图、500张验证图和1525张测试图)和20000张粗略标注的图像。
- COCO数据集 :以场景理解为目标,选取复杂的日常场景,共91类,其中82类有超过5000个实例。
5. 语义分割的评估指标
- Pixel Accuracy :逐像素分类精度。
- Mean Pixel Accuracy :每个类内被正确分类像素数的比例。
- IoU(交并比) :前景目标的交并比。
- mIoU :每个类的IoU平均值。
- FWIoU :根据每个类出现的概率给mIoU计算权重。
6. 图像分割网络的两个模块
- 卷积模块 :用于提取特征。
- 反卷积模块 :用于上采样,恢复到原图尺度。
7. 转置卷积
- 卷积 :输入4 4,输出2 2,卷积核3 3。
- 反卷积 :输入2 2,输出4 4,卷积核3 3。
- 卷积与反卷积 :转置关系(transposed)。
8. 典型图像分割网络
- 卷积网络 :编码器部分,负责特征提取。
- 反卷积网络:解码器部分,负责上采样和恢复图像。
9. 总结
图像分割技术在计算机视觉领域有着广泛的应用,涵盖了从简单的语义分割到复杂的全景分割。通过使用不同的数据集和评估指标,可以有效地训练和评估图像分割模型。卷积和反卷积模块是图像分割网络的核心组成部分,分别负责特征提取和图像恢复。