一、训练模型
1、使用PyTorch和torchvision库,从测试数据加载器 testloader 中取出数据,并进行可视化和标签打印。
2、基于PyTorch框架,对输入的图像数据进行预测,并输出预测结果。
这段代码实现了使用一个训练好的PyTorch模型对输入图像进行预测,并输出预测类别的功能。
二、测试模型
1、基于PyTorch的Python代码用于测试一个训练好的神经网络模型在测试集上的准确率
这段代码的主要功能是评估一个训练好的神经网络模型在测试集上的分类准确率。
2、基于PyTorch的Python代码主要用于计算并输出分类模型在不同类别上的准确率
这段代码的主要功能是分别计算并展示分类模型在不同类别上的预测准确率。
三、采用全局平均池化
1、基于PyTorch的Python代码定义了一个名为 Net 的卷积神经网络(CNN),并将其实例化且转移到合适的设备(CPU或GPU)上。
这段代码定义了一个包含卷积层、池化层、全局平均池化层和全连接层的卷积神经网络,并将其准备好用于后续的训练或测试操作。
2、Python代码使用PyTorch框架,统计一个名为 net 的神经网络模型中可训练参数的总数,并将结果打印输出 。
代码执行后的输出结果,表明名为 net 的神经网络模型总共有16022个可训练参数。
3、基于PyTorch的代码实现了神经网络的训练过程。
这段代码完整地实现了一个神经网络在训练数据集上的多轮训练过程,包括损失函数计算、反向传播和参数更新等关键步骤。
四、像keras一样显示各层参数
这段Python代码定义了一个函数 paras_summary ,其目的是像Keras框架那样,以一种结构化的方式展示PyTorch模型各层的参数信息,包括输入形状、输出形状、可训练性以及参数数量等。虽然代码没有给出函数的调用部分,但在实际使用时,通常会调用 paras_summary 函数并传入合适的输入形状和模型对象,以获取并展示模型各层的参数信息。