构建模型(假设为model)后,接下来就是训练模型。PyTorch训练模型主要包括加载数据集、损失计算、定义优化算法、反向传播、参数更新等主要步骤。1.加载预处理数据集加载和预处理数据集,可以使用PyTorch的数据处理工具,如torch.utils和torchvision等,这些工具将在第4章详细介绍。2.定义损失函数定义损失函数可以通过自定义方法或使用PyTorch内置的损失函数,如回归使用的losss_fun=nn. MSELoss(),分类使用的nn.BCELoss等损失函数,更多内容可参考本书5.2.4节。3.定义优化方法Pytoch常用的优化方法都封装在torch.optim里面,其设计很灵活,可以扩展为自定义的优化方法。所有的优化方法都是继承了基类optim.Optimizer,并实现了自己的优化步骤。最常用的优化算法就是梯度下降法及其各种变种,具体将在5.4节详细介绍,这些优化算法大多使用梯度更新参数。如使用SGD优化器时,可设置为optimizer = torch.optim. SGD(params,lr =0.001)。4.循环训练模型1)设置为训练模式:model. train()调用model.train()会把所有的module设置为训练模式。2)梯度清零:optimizer. zero_grad()在默认情况下梯度是累加的,需要手工把梯度初始化或清零,调用optimizer.zero_grad()3)求损失值:y_prev-model(x)loss=loss_fun(y_prev,y_true)4)自动求导,实现梯度的反向传播:loss.backward()5)更新参数:optimizer.step(.5.循环测试或验证模型1)设置为测试或验证模式:model. eval()调用model.eval()会把所有的training属性设置为False。2)在不跟踪梯度模式下计算损失值、预测值等:with. torch. no_grad():6.可视化结果下面我们通过实例来说明如何使用mn来构建网络模型、训练模型。【说明】model.train()与model.eval()的使用如果模型中有BN(Batch Normalization)层和Dropout,需要在训练时添加model.train()在测试时添加model.eval()。其中model.train()是保证BN层用每一批数据的均值和方差,而model.eval()是保证BN用全部训练数据的均值和方差;而对于Dropout,model.train()是随机取一部分网络连接来训练更新参数,而model.eval()是利用到了所有网络连接。即可前面我们介绍了使用PyTorch构建神经网络的一些组件、常用方法和主要步骤等,本节通过一个构建神经网络的实例把这些内容有机结合起来。3.5.1背景说明本节将利用神经网络完成对手写数字进行识别的实例,来说明如何借助nn工具箱来实现一个神经网络,并对神经网络有个直观了解。在这个基础上,后续我们将对nn的各模块进行详细介绍。实例环境使用PyTorch1.5+,GPU或CPU,源数据集为MNIST。主要步骤如下。。利用PyTorch内置函数mnist下载数据.·利用torchvision对数据进行预处理,调用torch.utils建立一个数据迭代器。。可视化源数据。。利用nn工具箱构建神经网络模型。实例化模型,并定义损失函数及优化器。训练模型。可视化结果。神经网络的结构如图3-5所示。