假设 1:影响房价的关键因素:卧室数目,卫浴数目和房子大小,分别用 xbeds, Xbaths, Xarea表示
假设 2:销售价格是关键因素的加权总和:
price = WbedsXbeds + WbathsXbaths + Warea*area + b
w称为权重,决定了每个特征对我们预测值的影响 b称为偏置
线性回归 中关村软件园 zPark
给予n维输入,x =[x1, xz, … xn]T线性方法有n个权重和偏差:
w = [w1, wz, ..,wn]",b
输出是输入的加权总和:
y = W1x1 + W2x2 + . + Wnxn + b
点积形式: ý=w'x+b
矩阵-向量乘法表示: ỳ=xw+b矢量化版本:y=<w,x>+b
梯度指示的反向是各点处的函数值减小最多的方向,所以无法保证梯度所指的方向就是函数的最小值或者真正应该前进的方向。
但沿着它的方向能最大限度的减小函数的值。所以在寻找函数的最小值的位置任务中,以梯度的信息为线索,决定前进的方向。
流程:在梯度法中,函数的取值从当前位置沿着梯度方向前进一定的距离,然后在新的方向重新求梯度,再沿着新梯度的方向前进,如此反复,不断的沿梯度方向前进。
基础优化算法 中关村软件园无制统 ZParKEP
随机梯度下降
它通过不断的在损失函数递减的方向上更新参数来降低误差