- 博客(14)
- 收藏
- 关注
原创 Git 命令行教程:配置 SSH 密钥高效克隆与管理项目
本文提供Git配置与克隆的完整指南,涵盖SSH密钥生成、GitHub公钥配置和项目克隆操作。重点讲解SSH密钥的生成方法(使用ssh-keygen命令)、公钥上传GitHub流程,以及HTTPS/SSH两种克隆方式的区别。特别说明首次SSH连接时的主机验证机制,并给出权限设置、多密钥管理等实用建议。通过SSH方式连接可避免重复认证,提升代码管理效率,适合需要频繁操作仓库的开发者。文中包含详细命令行操作示例和可视化配置截图,帮助用户快速完成环境搭建。
2025-09-17 20:29:07
1054
原创 逻辑回归(三):从原理到实战-训练,评估与应用指南
本文深入探讨鸢尾花分类项目中的数据可视化核心步骤。超越基础的df.describe(),我们通过绘制特征分布直方图、相关性热力图和散点图矩阵,直观评估数据质量、特征效用与模型选择依据。文章详解代码实现与图表解读,旨在培养你的数据直觉,明白为何可视化是模型成功不可或缺的一环。这是一份从实践出发的“避坑”指南,助你为机器学习打下坚实基础。
2025-09-14 19:30:00
1316
原创 逻辑回归(二):从原理到实战 - 训练、评估与应用指南
从数据异常到预测模型:手把手教你搞定鸢尾花分类项目!想实战机器学习却不知从何下手? 本文以经典的鸢尾花数据集为例,带你跨出最关键的第一步!你将会学到:如何快速“读懂”你的数据,一眼发现隐藏的异常值和陷阱?数据预处理的完整流水线:从清洗缺失值、编码文本标签,到标准化特征。 我们不只讲理论,更提供每一步的可运行代码和结果分析,让你真正理解每个步骤背后的意义,轻松复现到自己的项目中。完美的数据预处理是模型成功的基石。 本文将为你打好这个基础,下一篇我们将一起训练多个模型并科学评估它们的表现!
2025-09-13 15:54:19
1222
原创 Conda 环境管理与 PyCharm 集成实战:从创建到包安装的全方位指南
Conda 有一个官方的默认仓库(Anaconda 仓库),其中包含了大量常用的包。
2025-09-10 23:08:12
1172
原创 【机器学习十大算法】逻辑回归(一)
本期文章深入浅出地讲解了逻辑回归的核心思想。虽然名字中带有“回归”,但它实质上是一个二分类算法,用于预测样本属于某个类别(如“是/否”)的概率,而非连续的数值。线性计算:像线性回归一样,计算特征的加权和(z概率映射:通过神奇的Sigmoid 函数,将任意范围的z值平滑地、非线性地压缩到(0, 1)区间,将其转化为一个概率值。这是逻辑回归得名的原因,也是它能完成分类任务的关键。决策分类:设定一个阈值(通常为0.5),将得到的概率转化为最终的类别标签。为了找到最佳的模型参数,文章引入了似然函数的概念。
2025-09-09 22:48:15
1242
原创 Visual Studio 2022 安装失败?可能是路径长度惹的祸!
摘要: 从VS2019升级到VS2022时,因安装路径过长(超50字符)导致报错且无明确提示。尝试多种清理方法无效,最终缩短路径解决。原因是复杂安装过程易超出系统路径处理极限。关键教训:首次安装必须选简短路径(如C:\VS2022\),安装后无法修改路径,失败时优先检查路径长度并使用官方卸载工具清理。提前规划路径可避免重复安装问题。
2025-09-06 23:39:07
637
原创 【机器学习十大算法】线性回归(二)
本文介绍了梯度下降算法在机器学习优化中的应用。通过"下山"的比喻,解释了梯度下降的核心思想:通过计算损失函数的梯度(最陡下降方向),以适当步长(学习率)迭代更新模型参数,逐步逼近最优解。文章分析了三种梯度下降方法:批量梯度下降(计算精确但慢)、随机梯度下降(快速但不稳定)和小批量梯度下降(平衡效率与稳定性,最常用)。同时指出该方法可能陷入局部最优的局限性。内容注重直观理解,避开了复杂数学推导,适合初学者建立基本认知。
2025-09-05 21:22:30
987
原创 解决冷门数据集下载难题:QIN LUNG CT的qBittorrent优化方案
本文介绍获取QINLUNGCT肺癌CT影像数据集的详细方法及下载优化技巧。数据集可通过BitTorrent客户端下载,推荐使用qBittorrent。针对学术资源下载慢的问题,提供两种优化方案:一是调整qBittorrent设置,包括取消限速、增加连接数等;二是更新Tracker列表,通过添加公共Tracker服务器来提高下载速度。这些方法能有效改善冷门种子的下载体验,帮助研究者更高效地获取医学影像数据。
2025-09-04 19:15:00
1121
原创 【机器学习十大算法】线性回归(一)
本文以侦探破案为类比,通俗易懂地解释了线性回归的核心概念和误差项假设。文章首先将线性回归比作侦探的"经验法则",通过自变量(如房间数量、天气因素)预测目标变量(物品丢失数量),并引入误差项代表模型无法解释的随机因素。重点剖析了误差项的四个关键假设:独立性(案件间互不影响)、同分布(误差波动程度相似)、零均值(无系统性偏差)和高斯分布(误差呈钟形分布)。这些假设保证了模型的无偏性、最优性和统计推断的有效性。文章最后指出实际应用中这些假设可能不完美满足,并简要介绍了相应的解决方法。全文在严谨
2025-09-03 10:34:29
943
原创 MobX Store 与小程序页面:实现数据与行为的无缝集成
本期介绍了如何将MobX store绑定到小程序页面生命周期中,实现全局数据管理。主要步骤包括:1)在页面.js文件中导入createStoreBindings和store实例;2)在onLoad生命周期中调用createStoreBindings,配置需要绑定的数据字段(fields)和方法(actions);3)在onUnload中销毁绑定防止内存泄漏。通过这种方式,页面可以直接访问store中的数据和方法,并实现响应式更新。
2025-09-02 21:39:10
414
原创 解锁小程序全局状态管理:MobX 状态共享实战指南
我们定义了一个名为 updateNum1 的 MobX Action。MobX 会拦截这个调用,并在一个名为 updateNum1 的事务中执行。在事务内部,this.numA 的值会增加 step。MobX 会追踪这个对 this.numA 的修改。一旦 updateNum1 函数执行完毕,MobX 就会通知所有监听 this.numA 变化的地方(例如 UI 组件),让它们根据新的 numA 值进行更新。
2025-09-01 22:00:54
721
原创 解决 Docker Compose 启动失败:快速配置 Docker 国内镜像源
更换国内镜像源提速 在使用 Docker 进行项目部署时,`docker compose up -d` 命令是常用的启动方式。这通常意味着 Docker 在从 Docker Hub 下载镜像时发生了网络超时。本文将介绍如何通过更换国内镜像源来解决这个问题,提升开发效率。docker compose up -d网络超时的问题。在docker中调整下载镜像源地址。
2025-08-31 18:12:22
1524
原创 告别回调地狱!微信小程序API Promise化实战指南 (@miniprogram-api-promise)
本文介绍了如何通过npm包实现API的Promise化。API Promise化是指将基于回调函数的异步API改造为基于Promise的形式,以提升代码可读性和避免回调地狱。具体步骤包括:1)安装miniprogram-api-promise包;2)在app.js中导入promisifyAll方法;3)将wx对象方法转换为Promise形式。这种改造使异步操作更清晰易管理,只需获取"结果凭证"即可等待操作完成。实现后可直接调用Promise化的API方法。
2025-08-24 18:11:43
422
原创 【计算机视觉 在CVAT中导出YOLO格式数据文件,详细解析文件内容,小白新手必看!】
YOLO格式数据导出与文件解析:CVAT导出的YOLO格式数据包含obj_train_data文件夹(存储顺序命名的视频帧图像)。配套文件包括:1)YOLO标注文件(与图像同名,含类别ID和边界框信息);2)train.txt(训练图像路径列表);3)obj.names(类别名称列表,行号对应类别ID);4)obj.data(配置文件,定义类别数、训练集路径等关键参数)。这些文件共同构成YOLO模型训练所需的标准数据集结构,其中命名规则和路径配置对训练过程至关重要。
2025-07-17 23:08:39
416
Java 课程设计利器:移动电源租赁系统 (附源码+超详细报告)
2025-09-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人