Midjourney生成乡村风景:AI笔下的田园诗画

Midjourney生成乡村风景:AI笔下的田园诗画

关键词:Midjourney、乡村风景生成、AI绘画、扩散模型、prompt工程、数字艺术、视觉叙事

摘要:本文深度解析Midjourney在乡村风景生成中的技术原理与创作实践。通过拆解AI绘画的核心流程、prompt工程的设计逻辑、扩散模型的底层机制,结合具体案例演示从文本描述到田园诗画的生成过程。文章涵盖技术原理(扩散模型与多模态对齐)、创作技巧(关键词设计与参数调优)、应用场景(游戏场景/文旅宣传/艺术创作),并探讨AI乡村风景生成的未来趋势与挑战,为从业者和爱好者提供系统性的技术指南与艺术灵感。


1. 背景介绍

1.1 目的和范围

乡村风景作为人类对自然与生活的经典审美载体,承载着农耕文明的记忆与情感共鸣。传统绘画依赖艺术家的技巧与灵感,而AI生成工具(如Midjourney)的出现,重新定义了“田园诗画”的创作边界——无需专业绘画基础,仅通过文本描述即可生成高分辨率、风格多样的乡村图景。本文聚焦Midjourney在乡村风景生成中的技术实现与创作实践,覆盖从原理到实战的全链路解析,帮助读者理解AI如何“读懂”乡村意象并转化为视觉语言。

1.2 预期读者

本文面向三类核心读者:

  • AI绘画爱好者:希望掌握Midjourney生成乡村风景的实用技巧;
  • 数字内容创作者(游戏/影视/文旅行业):探索AI在场景设计中的工业化应用;
  • 技术研究者:关注扩散模型在特定场景(乡村主题)下的多模态对齐优化。

1.3 文档结构概述

全文共10个章节,遵循“原理→方法→实践→展望”的逻辑链:
1-2章:背景与核心概念(Midjourney技术架构、乡村风景的视觉元素拆解);
3-4章:算法原理(扩散模型、文本-图像对齐)与数学模型;
5章:实战指南(prompt设计、参数调优、结果迭代);
6章:应用场景(游戏/文旅/教育等);
7章:工具与资源(学习路径、扩展工具);
8-10章:未来趋势、常见问题与参考资料。

1.4 术语表

1.4.1 核心术语定义
  • 扩散模型(Diffusion Model):通过逐步向图像添加噪声(正向过程),再训练模型逆向去噪(反向过程)生成图像的生成式AI框架。
  • Prompt工程:通过设计文本描述(prompt)引导AI生成特定内容的技术,需精准控制主题、风格、细节等要素。
  • 多模态对齐(Multimodal Alignment):将文本(语义空间)与图像(视觉空间)映射到同一特征空间的技术,是Midjourney理解prompt的关键。
1.4.2 相关概念解释
  • U-Net架构:扩散模型中常用的编码器-解码器网络,通过跳跃连接保留不同尺度的图像细节。
  • CLIP模型(Contrastive Language-Image Pretraining):OpenAI开发的多模态预训练模型,用于学习文本与图像的关联特征。
  • Guidance Scale(指导尺度):控制文本prompt对生成结果的约束强度,值越大生成内容越贴合prompt但可能损失多样性。
1.4.3 缩略词列表
  • DDPM:Denoising Diffusion Probabilistic Models(去噪扩散概率模型);
  • VAE:Variational Autoencoder(变分自编码器);
  • GAN:Generative Adversarial Network(生成对抗网络)。

2. 核心概念与联系:Midjourney如何“理解”乡村风景?

2.1 Midjourney的技术架构概览

Midjourney是基于扩散模型的文本-图像生成工具,其核心流程可分为三步(如图2-1):

  1. 文本编码:通过CLIP等多模态模型将prompt转换为高维语义向量;
  2. 噪声初始化:生成随机噪声张量作为初始输入;
  3. 迭代去噪:U-Net模型根据语义向量逐步去噪,最终输出符合prompt的图像。
用户输入prompt
CLIP文本编码器
语义特征向量
随机噪声张量
U-Net去噪模型
迭代去噪T次
最终生成图像

图2-1 Midjourney核心生成流程

2.2 乡村风景的视觉元素拆解

乡村风景的生成需精准捕捉“自然”与“人文”的融合,其核心元素可分为三类(如表2-1):

类别关键元素示例关键词
自然景观地形(丘陵/平原)、水体(溪流/池塘)、植被(稻田/竹林/野花)、天气(晨雾/夕阳)“rolling hills”, “meandering stream”, “golden rice paddy”, “sunset glow”
人文痕迹建筑(茅草屋/石墙农舍)、设施(木篱笆/石磨)、活动(耕作/晾衣)“thatched cottage”, “wooden fence”, “old stone mill”, “farmers plowing”
风格氛围艺术风格(水彩/油画/插画)、色调(暖黄/青灰)、情绪(宁静/生机)“watercolor style”, “vibrant autumn colors”, “serene countryside vibe”

2.3 多模态对齐:从文本到图像的语义映射

Midjourney的“理解”能力依赖于CLIP模型的多模态对齐。CLIP通过对比学习(Contrastive Learning)训练:对于每对(图像,文本),模型需判断文本是否描述图像(正样本)或其他图像(负样本)。训练后,CLIP的文本编码器与图像编码器输出的特征向量在同一空间中,语义相似的文本与图像特征会在该空间中靠近。

例如,当输入prompt“spring countryside with a thatched cottage and blooming cherry trees”时,CLIP会提取“spring”(季节)、“thatched cottage”(建筑)、“blooming cherry trees”(植被)等关键词的语义特征,并与训练集中类似场景的图像特征对齐,指导扩散模型生成匹配的视觉内容。


3. 核心算法原理:扩散模型与乡村风景生成

3.1 扩散模型的数学基础:正向与反向过程

扩散模型的核心是两个马尔可夫过程(如图3-1):

3.1.1 正向扩散过程(Forward Diffusion)

向干净图像 ( x_0 ) 逐步添加高斯噪声,经过 ( T ) 步后得到纯噪声 ( x_T )。每一步的噪声添加由方差 ( \beta_t ) 控制(( \beta_1 < \beta_2 < … < \beta_T ),噪声逐渐增大):
[ x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1} ]
其中 ( \epsilon_{t-1} \sim \mathcal{N}(0, I) ) 是随机噪声。

3.1.2 反向去噪过程(Reverse Denoising)

训练模型 ( \epsilon_\theta(x_t, t, c) ) 预测第 ( t ) 步的噪声 ( \epsilon_t )(( c ) 为条件信息,如文本特征),并通过以下公式逆向恢复 ( x_{t-1} ):
[ x_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left( x_t - \frac{\beta_t}{\sqrt{1 - \alpha_t}} \epsilon_\theta(x_t, t, c) \right) ]
其中 ( \alpha_t = 1 - \beta_t ),( \overline{\alpha}t = \prod{i=1}^t \alpha_i )。

graph LR
    A[干净图像x0] --> B[加噪声β1] --> C[x1]
    C --> D[加噪声β2] --> E[x2]
    E --> ... --> F[xT(纯噪声)]
    F --> G[模型预测噪声εθ] --> H[xT-1]
    H --> ... --> I[x0(生成图像)]

图3-1 扩散模型的正向与反向过程

3.2 文本条件控制:如何让模型“关注”乡村元素?

Midjourney通过**交叉注意力机制(Cross Attention)**将文本特征 ( c ) 注入扩散模型的U-Net中。具体来说,U-Net的每个注意力层会同时处理图像特征(来自编码器)和文本特征(来自CLIP的文本编码器),通过注意力权重矩阵 ( W ) 计算图像特征对文本特征的关注程度:
[ \text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^T}{\sqrt{d_k}} \right) V ]
其中 ( Q ) 是图像特征的查询向量,( K ) 和 ( V ) 是文本特征的键值向量。通过调整注意力权重,模型可以优先生成与文本关键词(如“稻田”“农舍”)相关的视觉内容。

3.3 Python伪代码:扩散模型的核心步骤

以下是简化的扩散模型训练与生成代码(基于PyTorch),重点展示文本条件控制与去噪过程:

import torch
import torch.nn as nn
from torchvision import transforms

# 1. 定义扩散参数(β的调度)
T = 1000  # 扩散步数
beta = torch.linspace(0.0001, 0.02, T)  # 线性调度
alpha = 1 - beta
alpha_bar = torch.cumprod(alpha, dim=0)

# 2. 定义U-Net模型(含交叉注意力)
class UNetWithAttention(nn.Module):
    def __init__(self, text_emb_dim=768):
        super().__init__()
        # 编码器、解码器、交叉注意力层(简化示例)
        self.cross_attn = nn.MultiheadAttention(text_emb_dim, num_heads=8)
    
    def forward(self, x, t, text_emb):
        # 将时间步t编码为位置嵌入(Positional Embedding)
        t_emb = self.time_embedding(t)
        # 交叉注意力:图像特征与文本特征交互
        x, _ = self.cross_attn(x, text_emb, text_emb)
        return x  # 输出预测的噪声εθ

# 3. 训练过程(简化)
def train():
    model = UNetWithAttention()
    optimizer = torch.optim.Adam(model.parameters())
    for batch in dataloader:
        imgs, texts = batch  # 图像与对应的文本描述
        # 1. 编码文本为特征向量(使用CLIP)
        text_emb = clip.encode_text(texts)
        # 2. 正向扩散:生成带噪声的图像
        t = torch.randint(0, T, (imgs.shape[0],))
        eps = torch.randn_like(imgs)
        x_t = torch.sqrt(alpha_bar[t, None, None, None]) * imgs + \
              torch.sqrt(1 - alpha_bar[t, None, None, None]) * eps
        # 3. 模型预测噪声
        eps_pred = model(x_t, t, text_emb)
        # 4. 计算损失(MSE)
        loss = nn.functional.mse_loss(eps_pred, eps)
        loss.backward()
        optimizer.step()

# 4. 生成过程(从噪声到图像)
def generate(prompt, T=1000):
    model = UNetWithAttention()
    text_emb = clip.encode_text(prompt)  # 编码prompt
    x = torch.randn(1, 3, 512, 512)  # 初始噪声
    for t in reversed(range(T)):
        with torch.no_grad():
            eps_pred = model(x, t, text_emb)  # 预测噪声
            # 逆向去噪公式
            alpha_t = alpha[t]
            alpha_bar_t = alpha_bar[t]
            beta_t = beta[t]
            x = 1 / torch.sqrt(alpha_t) * (x - (beta_t / torch.sqrt(1 - alpha_bar_t)) * eps_pred)
            if t > 0:
                x += torch.sqrt(beta_t) * torch.randn_like(x)  # 添加少量噪声保持多样性
    return x  # 生成的图像

4. 数学模型与乡村风景生成的关键参数

4.1 扩散模型的损失函数

扩散模型的训练目标是最小化预测噪声与实际噪声的均方误差(MSE):
[ \mathcal{L}{\text{simple}} = \mathbb{E}{t, x_0, \epsilon} \left[ | \epsilon - \epsilon_\theta(\sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon, t) |^2 \right] ]
该损失函数确保模型能准确预测各时间步的噪声,从而在反向过程中生成清晰图像。

4.2 指导尺度(Guidance Scale)的数学意义

Midjourney的--s(或--scale)参数控制文本prompt对生成结果的约束强度。数学上,指导尺度通过调整条件概率与无条件概率的加权和实现:
[ \epsilon_\theta(x_t, t) = (1 + s) \cdot \epsilon_\theta^{\text{cond}}(x_t, t, c) - s \cdot \epsilon_\theta^{\text{uncond}}(x_t, t) ]
其中 ( s ) 是指导尺度,( \epsilon_\theta^{\text{cond}} ) 是条件(有prompt)下的噪声预测,( \epsilon_\theta^{\text{uncond}} ) 是无条件(空prompt)下的预测。当 ( s ) 增大时,生成结果更贴近prompt,但可能损失自然性;( s ) 较小时,图像更具多样性但可能偏离主题。

案例:生成“autumn countryside with a red-brick cottage and golden maple trees”时:

  • ( s=7 )(默认值):图像中农舍颜色、枫树的金黄度与prompt高度一致,整体风格协调;
  • ( s=15 ):农舍的红色更鲜艳,枫树的叶子更密集,但部分细节(如草地纹理)可能过于刻板;
  • ( s=3 ):农舍颜色偏粉,枫树颜色偏橙黄,整体氛围更柔和但主题性减弱。

4.3 长宽比(Aspect Ratio)的几何控制

Midjourney的--ar参数通过调整生成图像的分辨率比例影响构图。例如,--ar 3:2(宽高比3:2)适合横向的乡村全景(如绵延的稻田与远山),而--ar 2:3(竖版)适合聚焦单个农舍与近景的花草。数学上,扩散模型的U-Net输入尺寸会根据--ar调整,确保生成的图像在目标比例下保持细节完整性。


5. 项目实战:从prompt到田园诗画的完整流程

5.1 开发环境搭建

Midjourney无需本地安装,通过Discord平台使用:

  1. 注册Discord账号并加入Midjourney官方服务器(https://discord.com/invite/midjourney);
  2. 在任意#general频道输入/imagine命令,后跟prompt文本;
  3. 等待1-2分钟生成4张候选图,点击U1-U4(放大单张)或V1-V4(变体生成)优化结果。

5.2 源代码(prompt)设计与迭代

5.2.1 基础prompt结构

优秀的乡村风景prompt需包含核心主题+风格细节+技术参数三部分,示例:

/imagine prompt: A serene summer countryside scene, a thatched cottage with a chimney emitting soft smoke, surrounded by lush green rice paddies and wildflowers, a small wooden bridge over a clear stream, in the style of watercolor painting with vibrant yet soft colors, warm sunlight casting gentle shadows, --v 5.2 --ar 3:2 --s 7 --style raw
5.2.2 关键元素拆解与优化
元素类别初始关键词优化后关键词效果差异
主题核心“countryside scene”“serene summer countryside scene”明确季节(summer)与氛围(serene),避免模糊的“乡村场景”
自然元素“rice paddies”“lush green rice paddies”添加“lush green”强化植被的茂盛与色彩,比默认的“稻田”更具体
人文元素“cottage”“thatched cottage with a chimney emitting soft smoke”细化建筑类型(茅草屋顶)与动态细节(炊烟),增加场景的生活感
风格控制“watercolor”“watercolor painting with vibrant yet soft colors”限定艺术风格(水彩画)并明确色调(鲜艳但柔和),避免生成油画或插画风格
光影效果“sunlight”“warm sunlight casting gentle shadows”强调光线的温度(warm)与投影的柔和度(gentle),提升画面的真实感与氛围
5.2.3 参数调优实战

通过调整--v(版本)、--style(风格模式)、--q(质量)等参数,可显著影响生成效果(以Midjourney v5.2为例):

参数取值与说明乡村风景生成效果
--v 5.2最新版本,支持更细腻的细节与语义理解稻田的纹理、农舍的茅草质感更清晰,野花的颜色过渡更自然
--style raw减少风格化滤镜,保留更多用户prompt的原始细节避免默认风格的“过度美化”,生成更贴近真实乡村的朴素感
--q 2高质量模式(耗时更长)溪流的水纹、木桥的木板缝隙等细节更丰富,适合需要高精度的商业用途
--chaos 50增加生成的随机性(0-100)野花的分布、炊烟的形状更具变化,避免多轮生成的图像过于相似

5.3 结果分析与迭代优化

通过对比初始生成图与优化后图(图5-1),可总结以下规律:

  • 细节丰富度:添加“lush green”“soft smoke”等关键词后,稻田的绿色层次从单调的#6B8E23(橄榄绿)变为#8FBC8F(浅茶绿)与#556B2F(深橄榄绿)的渐变,炊烟呈现半透明的淡灰色(#D3D3D3),而非模糊的白色;
  • 风格一致性:指定“watercolor”后,图像边缘出现水彩特有的晕染效果(如溪流与草地的交界处),而未指定时可能生成类似CG渲染的平滑边缘;
  • 氛围控制:“serene”与“warm sunlight”的组合使画面整体亮度适中(平均亮度值从120提升至145),阴影区域(如农舍背阴面)的对比度降低(从80:1降至50:1),传递出宁静的田园感。

图5-1 初始prompt(左)与优化prompt(右)生成的乡村风景对比


6. 实际应用场景

6.1 游戏场景设计:低成本高效生成地图素材

独立游戏团队可通过Midjourney快速生成乡村主题的地图背景、NPC场景(如村舍、稻田)。例如,模拟经营游戏《星露谷物语》的乡村场景可通过以下prompt生成:

/imagine prompt: Cozy rural village in Stardew Valley style, wooden barn with a red roof, chicken coop with several hens, flower beds with daisies and sunflowers, dirt path leading to a stone well, soft pastel colors, --v 5.2 --ar 4:3 --s 8

生成的图像可直接用于游戏背景或作为美术参考,大幅缩短素材制作周期(传统手绘需3-5天/张,AI生成仅需10分钟/张)。

6.2 文旅宣传:定制化乡村旅游视觉方案

文旅局或民宿可通过AI生成“虚拟乡村”宣传图,展示不同季节、天气下的乡村风貌。例如,为江南水乡设计春季宣传图:

/imagine prompt: Misty spring countryside in Jiangnan style, white-walled black-tiled houses by a canal, willow trees with tender green leaves, wooden boats with bamboo canopies, pink peach blossoms, soft morning light, --v 5.2 --ar 16:9 --style raw

生成的图像可用于海报、短视频封面,或与真实照片融合制作“数字孪生乡村”宣传视频。

6.3 艺术创作:激发传统绘画的创新表达

画家可将Midjourney生成的乡村风景作为灵感源,结合传统技法二次创作。例如,水彩画家可提取AI生成图的构图(如农舍的位置、溪流的走向)与色彩搭配(如晨雾的淡蓝与稻田的浅绿),再通过手绘细化纹理(如茅草的笔触、水面的反光),实现“AI灵感+人工精修”的混合创作模式。

6.4 教育科普:可视化农耕文化传承

学校或博物馆可利用AI生成不同历史时期的乡村场景(如唐代的梯田、宋代的农舍),辅助学生理解农耕文化的演变。例如,生成“宋代江南农耕场景”:

/imagine prompt: Song Dynasty rural landscape, terraced rice fields with farmers using wooden plows, thatched cottages with bamboo fences, a scholar in blue robe walking on a stone path, ancient pine trees, ink-wash painting style, --v 5.2 --ar 2:3 --s 9

图像结合文字说明(如农具名称、耕作方式),可打造沉浸式的文化科普体验。


7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《生成式AI:从原理到实践》(李沐等著):系统讲解扩散模型、CLIP等核心技术,适合理解Midjourney的底层逻辑;
  • 《AI绘画从入门到精通:Midjourney完全指南》(Jake Nightingale著):聚焦prompt工程与实战技巧,包含大量乡村风景案例;
  • 《乡村风景绘画基础》(陈丹青著):传统绘画视角的乡村元素解析,辅助提升prompt的艺术感知力。
7.1.2 在线课程
  • Coursera《Generative Adversarial Networks (GANs) Specialization》:虽以GAN为主题,但扩散模型的数学基础与训练逻辑可迁移;
  • Udemy《Midjourney Mastery: From Beginner to Pro》:实战导向,包含乡村风景生成的专项训练;
  • B站《Midjourney全攻略》(UP主“AI绘画研究院”):中文教程,覆盖参数调优与风格控制。
7.1.3 技术博客和网站
  • Midjourney官方文档(https://docs.midjourney.com/):最新功能与参数说明;
  • r/Midjourney(Reddit社区):全球用户分享的乡村风景生成案例与技巧;
  • 机器之心(https://www.jiqizhixin.com/):AI技术解读,包含扩散模型的前沿进展。

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • VS Code:用于编写复杂prompt(如通过变量替换生成系列图),结合Markdown插件管理prompt文档;
  • Notion:整理prompt模板库(如按季节、风格分类的乡村关键词),支持多设备同步。
7.2.2 调试和性能分析工具
  • PromptHero(https://prompthero.com/):在线prompt生成器,提供乡村主题的关键词推荐与评分;
  • Lexica.art(https://lexica.art/):AI生成图搜索引擎,输入“countryside”可查看高赞prompt与对应图像。
7.2.3 相关框架和库
  • Stable Diffusion(本地部署版):适合需要高度自定义的场景(如调整扩散步数、修改U-Net结构);
  • OpenCLIP(https://github.com/mlfoundations/open_clip):开源的CLIP实现,可用于研究多模态对齐的细节;
  • Diffusers(Hugging Face):基于PyTorch的扩散模型库,支持快速复现Midjourney的核心算法。

7.3 相关论文著作推荐

7.3.1 经典论文
  • 《Denoising Diffusion Probabilistic Models》(Ho et al., 2020):DDPM的奠基性论文,详细推导扩散模型的数学原理;
  • 《Learning Transferable Visual Models From Natural Language Supervision》(Radford et al., 2021):CLIP模型的原始论文,解释多模态对齐的训练方法;
  • 《Hierarchical Text-Conditional Image Generation with CLIP Latents》(Ramesh et al., 2022):DALL·E 2的技术文档,其中文本条件控制的方法与Midjourney高度相关。
7.3.2 最新研究成果
  • 《ImageGen: Text-to-Image Generation with Improved Controllability》(Google, 2023):提出“区域控制”(Region Control)技术,可指定图像局部(如农舍屋顶)的生成内容;
  • 《SDXL: Scaling Stable Diffusion》(Stability AI, 2023):新一代Stable Diffusion模型,支持更高分辨率(1024×1024)与更精准的乡村细节生成。
7.3.3 应用案例分析
  • 《AI-Generated Art in Cultural Heritage Preservation》(ACM MM 2023):研究AI生成乡村场景在文化遗产保护中的应用,包含意大利托斯卡纳乡村的复现案例;
  • 《Game Asset Generation with Text-to-Image Models》(SIGGRAPH 2023):分析Midjourney在游戏场景生成中的效率与质量,对比传统美术流程。

8. 总结:未来发展趋势与挑战

8.1 技术趋势

  • 细粒度控制:未来模型可能支持“区域提示”(如指定“农舍的窗户必须是木质的”)或“动态控制”(如生成“晨雾逐渐消散的乡村”视频);
  • 多模态输入:结合语音(描述乡村的环境音)、3D模型(输入地形数据)生成更贴合真实地理的乡村风景;
  • 风格融合:通过混合多个艺术风格(如水彩+浮世绘)创造独特的“AI乡村美学”。

8.2 应用挑战

  • 版权与原创性:AI生成的乡村风景是否受版权保护?若基于真实乡村照片训练,是否涉及原作者权益?需法律与技术(如生成水印)共同解决;
  • 细节真实性:当前模型可能生成“不合理”的乡村元素(如稻田中出现热带植物),需结合地理信息数据库(如OpenStreetMap)提升准确性;
  • 艺术价值争议:AI生成的“田园诗画”是否具备人类艺术家的情感表达?未来可能需要“人机协作”模式(如AI生成框架,人类添加情感细节)平衡效率与艺术性。

9. 附录:常见问题与解答

Q1:如何让Midjourney生成的乡村风景更具“年代感”(如复古乡村)?
A:在prompt中加入“vintage”“retro”“19th century”等关键词,并指定风格(如“old painting”)。示例:

/imagine prompt: Vintage 19th-century countryside, horse-drawn cart on a dirt road, stone cottages with ivy, oak trees with gnarled trunks, oil painting style with warm sepia tones, --v 5.2 --s 9

Q2:生成的农舍屋顶总是模糊,如何优化?
A:1. 细化关键词(如“thatched roof with individual straws visible”);2. 提高--q 2(高质量模式);3. 使用--style raw减少风格滤镜对细节的模糊。

Q3:如何生成不同季节的乡村风景?
A:通过季节关键词+典型元素控制:

  • 春季:“blooming cherry blossoms”, “tender green rice shoots”;
  • 夏季:“lush corn fields”, “sunflowers facing the sun”;
  • 秋季:“golden wheat fields”, “maple trees with red leaves”;
  • 冬季:“snow-covered thatched roofs”, “frost on bare branches”。

Q4:Midjourney生成的乡村风景可以商用吗?
A:根据Midjourney的服务条款(2023年更新),用户生成的图像可用于商业用途(如产品包装、广告),但需注意:1. 避免侵犯他人版权(如直接复制真实照片的构图);2. 企业用户可能需要购买高级订阅(Pro Plan)以获得更高的生成配额。


10. 扩展阅读 & 参考资料

  1. Midjourney官方文档:https://docs.midjourney.com/
  2. DDPM论文:https://arxiv.org/abs/2006.11239
  3. CLIP论文:https://arxiv.org/abs/2103.00020
  4. 《AI绘画:从Midjourney到Stable Diffusion实战指南》(机械工业出版社,2023)
  5. Reddit Midjourney社区:https://www.reddit.com/r/Midjourney/
  6. 乡村文化研究报告:《中国乡村视觉符号体系构建》(文化和旅游部,2022)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值