AIGC领域多智能体系统在旅游规划中的智能推荐

AIGC领域多智能体系统在旅游规划中的智能推荐

关键词:AIGC、多智能体系统、旅游规划、智能推荐、个性化服务、协同决策、知识图谱

摘要:本文探讨了AIGC(人工智能生成内容)领域多智能体系统在旅游规划中的应用。通过构建由多个专业化智能体组成的协同系统,结合知识图谱和深度学习技术,实现个性化的旅游路线推荐。文章详细分析了系统架构、核心算法、数学模型和实际应用案例,并展望了该技术的未来发展趋势和挑战。

1. 背景介绍

1.1 目的和范围

随着人工智能技术的快速发展,AIGC(人工智能生成内容)和多智能体系统(MAS)在旅游规划领域展现出巨大潜力。本文旨在探讨如何利用多智能体系统架构,结合AIGC技术,构建智能化的旅游推荐系统,为用户提供个性化、动态化的旅游规划服务。

1.2 预期读者

本文适合以下读者:

  • 人工智能和AIGC领域的研究人员
  • 旅游科技行业的开发者和产品经理
  • 对智能推荐系统感兴趣的技术人员
  • 计算机科学和旅游管理相关专业的学生

1.3 文档结构概述

本文首先介绍多智能体系统和AIGC的基本概念,然后详细阐述系统架构和核心算法。接着通过数学模型和实际案例展示系统实现,最后讨论应用场景、工具资源和未来发展趋势。

1.4 术语表

1.4.1 核心术语定义
  • AIGC(人工智能生成内容):利用人工智能技术自动生成文本、图像、音频等内容的技术
  • 多智能体系统(MAS):由多个自治智能体组成的系统,智能体之间通过协作完成复杂任务
  • 旅游知识图谱:结构化表示旅游领域知识的语义网络,包含景点、活动、服务等实体及其关系
1.4.2 相关概念解释
  • 协同过滤:基于用户历史行为和相似用户偏好进行推荐的算法
  • 强化学习:通过试错学习最优决策策略的机器学习方法
  • 自然语言处理(NLP):使计算机理解、解释和生成人类语言的技术
1.4.3 缩略词列表
缩略词全称
AIGCAI-Generated Content
MASMulti-Agent System
NLPNatural Language Processing
RLReinforcement Learning
KGKnowledge Graph

2. 核心概念与联系

多智能体系统在旅游规划中的应用架构如下图所示:

用户接口
用户画像智能体
自然语言处理智能体
推荐协调智能体
景点推荐智能体
路线规划智能体
预算管理智能体
知识图谱数据库
反馈学习模块

系统由多个专业化智能体组成,每个智能体负责特定功能:

  1. 用户画像智能体:分析用户历史行为和偏好,构建动态用户画像
  2. 自然语言处理智能体:理解用户自然语言输入,提取旅游需求
  3. 推荐协调智能体:协调各智能体工作,制定综合推荐策略
  4. 景点推荐智能体:基于知识图谱推荐符合用户偏好的景点
  5. 路线规划智能体:优化景点间的路线和行程安排
  6. 预算管理智能体:根据用户预算调整推荐方案

这些智能体通过消息传递和共享记忆协同工作,共同完成旅游规划任务。知识图谱作为系统的核心知识库,存储了景点信息、用户评价、交通方式等结构化数据。

3. 核心算法原理 & 具体操作步骤

3.1 多智能体协同推荐算法

系统采用基于价值分解的多智能体强化学习框架(VDN),将全局奖励函数分解为各智能体的局部奖励函数。以下是Python实现的核心部分:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

class AgentNetwork(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(AgentNetwork, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, output_dim)
        
    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        return self.fc3(x)

class VDN(nn.Module):
    def __init__(self, agent_num, input_dim, hidden_dim, output_dim):
        super(VDN, self).__init__()
        self.agents = nn.ModuleList([AgentNetwork(input_dim, hidden_dim, output_dim) for _ in range(agent_num)])
        
    def forward(self, observations):
        # observations shape: (batch_size, agent_num, obs_dim)
        batch_size = observations.size(0)
        agent_outputs = []
        for i, agent in enumerate(self.agents):
            agent_input = observations[:, i, :]
            agent_output = agent(agent_input)
            agent_outputs.append(agent_output)
        
        # Sum individual Q values
        total_q = torch.sum(torch.stack(agent_outputs, dim=1), dim=1)
        return total_q, agent_outputs

3.2 旅游路线规划算法

路线规划智能体使用改进的遗传算法优化行程安排:

import random
from typing import List, Tuple

class GeneticRoutePlanner:
    def __init__(self, attractions: List[dict], population_size=50, elite_size=10, mutation_rate=0.01, generations=500):
        self.attractions = attractions
        self.population_size = population_size
        self.elite_size = elite_size
        self.mutation_rate = mutation_rate
        self.generations = generations
        
    def create_individual(self) -> List[int]:
        """创建随机个体(路线)"""
        individual = list(range(len(self.attractions)))
        random.shuffle(individual)
        return individual
    
    def initial_population(self) -> List[List[int]]:
        """初始化种群"""
        return [self.create_individual() for _ in range(self.population_size)]
    
    def fitness(self, individual: List[int]) -> float:
        """计算适应度(路线评分)"""
        total_score = 0
        total_time = 0
        total_cost = 0
        
        for i in range(len(individual)):
            attraction = self.attractions[individual[i]]
            total_score += attraction['rating']
            
            if i > 0:
                prev_attraction = self.attractions[individual[i-1]]
                # 计算景点间移动时间和成本
                time, cost = self.calculate_transition(prev_attraction, attraction)
                total_time += time
                total_cost += cost
        
        # 平衡评分、时间和成本
        return total_score - 0.1 * total_time - 0.05 * total_cost
    
    def rank_population(self, population: List[List[int]]) -> List[Tuple[float, List[int]]]:
        """种群排序"""
        ranked = [(self.fitness(ind), ind) for ind in population]
        return sorted(ranked, key=lambda x: x[0], reverse=True)
    
    def selection(self, ranked_population: List[Tuple[float, List[int]]]) -> List[List[int]]:
        """选择操作"""
        selection_results = []
        
        # 精英保留
        for i in range(self.elite_size):
            selection_results.append(ranked_population[i][1])
        
        # 轮盘赌选择
        max_fitness = sum([item[0] for item in ranked_population])
        selection_probs = [item[0]/max_fitness for item in ranked_population]
        
        for _ in range(len(ranked_population) - self.elite_size):
            pick = random.random()
            for i in range(len(ranked_population)):
                if pick <= selection_probs[i]:
                    selection_results.append(ranked_population[i][1])
                    break
                pick -= selection_probs[i]
        
        return selection_results
    
    def breed(self, parent1: List[int], parent2: List[int]) -> List[int]:
        """交叉操作"""
        child = []
        geneA = random.randint(0, len(parent1)-1)
        geneB = random.randint(0, len(parent1)-1)
        
        start_gene = min(geneA, geneB)
        end_gene = max(geneA, geneB)
        
        for i in range(start_gene, end_gene):
            child.append(parent1[i])
            
        remaining = [item for item in parent2 if item not in child]
        child += remaining
        
        return child
    
    def mutate(self, individual: List[int]) -> List[int]:
        """变异操作"""
        for swapped in range(len(individual)):
            if random.random() < self.mutation_rate:
                swap_with = random.randint(0, len(individual)-1)
                individual[swapped], individual[swap_with] = individual[swap_with], individual[swapped]
        return individual
    
    def evolve(self, population: List[List[int]]) -> List[List[int]]:
        """种群进化"""
        ranked_population = self.rank_population(population)
        selection_results = self.selection(ranked_population)
        
        mating_pool = selection_results[:]
        
        # 精英直接保留
        children = selection_results[:self.elite_size]
        
        # 交叉繁殖
        for _ in range(len(mating_pool) - self.elite_size):
            parent1 = random.choice(mating_pool)
            parent2 = random.choice(mating_pool)
            child = self.breed(parent1, parent2)
            children.append(child)
        
        # 变异
        mutated_children = [self.mutate(child) for child in children]
        
        return mutated_children
    
    def plan_route(self) -> List[int]:
        """执行遗传算法规划最优路线"""
        population = self.initial_population()
        
        for _ in range(self.generations):
            population = self.evolve(population)
        
        best_individual = self.rank_population(population)[0][1]
        return best_individual
    
    def calculate_transition(self, attraction1: dict, attraction2: dict) -> Tuple[float, float]:
        """计算两个景点间的移动时间和成本"""
        # 这里可以集成地图API获取实际交通数据
        # 简化版: 基于距离估算
        lat1, lon1 = attraction1['location']
        lat2, lon2 = attraction2['location']
        
        # 简化的距离计算(实际应用中应使用Haversine公式)
        distance = ((lat1-lat2)**2 + (lon1-lon2)**2)**0.5
        
        # 假设平均交通速度和时间成本
        time = distance * 30  # 分钟
        cost = distance * 5   # 货币单位
        
        return time, cost

4. 数学模型和公式 & 详细讲解 & 举例说明

4.1 多智能体强化学习的数学模型

系统采用基于价值分解的多智能体强化学习框架,其核心数学表示为:

全局动作价值函数 Q t o t Q_{tot} Qtot分解为各智能体局部动作价值函数 Q a Q_a Qa的和:

Q t o t ( τ , u ) = ∑ a = 1 n Q a ( τ a , u a ) Q_{tot}(\tau, \mathbf{u}) = \sum_{a=1}^{n} Q_a(\tau^a, u^a) Qtot(τ,u)=a=1nQa(τa,ua)

其中:

  • τ \tau τ表示所有智能体的联合动作观察历史
  • u \mathbf{u} u表示联合动作
  • n n n为智能体数量
  • τ a \tau^a τa u a u^a ua分别表示智能体 a a a的局部观察历史和动作

4.2 旅游路线优化的目标函数

路线规划的目标是最大化以下多目标函数:

max ⁡ ( α ∑ i = 1 m R i − β ∑ j = 1 m − 1 T j − γ ∑ j = 1 m − 1 C j ) \max \left( \alpha \sum_{i=1}^{m} R_i - \beta \sum_{j=1}^{m-1} T_j - \gamma \sum_{j=1}^{m-1} C_j \right) max(αi=1mRiβj=1m1Tjγj=1m1Cj)

其中:

  • m m m为景点数量
  • R i R_i Ri为第 i i i个景点的评分
  • T j T_j Tj为第$j个转移的时间成本
  • C j C_j Cj为第$j个转移的经济成本
  • α , β , γ \alpha, \beta, \gamma α,β,γ为权重参数,满足 α + β + γ = 1 \alpha + \beta + \gamma = 1 α+β+γ=1

4.3 景点推荐的概率模型

景点推荐智能体使用基于知识图谱的个性化推荐算法,景点 i i i被推荐的概率为:

P ( i ∣ u ) = exp ⁡ ( f ( u , i ) ) ∑ j ∈ I exp ⁡ ( f ( u , j ) ) P(i|u) = \frac{\exp(f(u, i))}{\sum_{j\in I} \exp(f(u, j))} P(iu)=jIexp(f(u,j))exp(f(u,i))

其中 f ( u , i ) f(u, i) f(u,i)是用户 u u u与景点 i i i的匹配分数,计算为:

f ( u , i ) = u T i + u T M c i + b i f(u, i) = \mathbf{u}^T \mathbf{i} + \mathbf{u}^T \mathbf{M} \mathbf{c}_i + b_i f(u,i)=uTi+uTMci+bi

其中:

  • u \mathbf{u} u为用户嵌入向量
  • i \mathbf{i} i为景点嵌入向量
  • M \mathbf{M} M为转换矩阵
  • c i \mathbf{c}_i ci为景点 i i i的上下文特征
  • b i b_i bi为景点 i i i的偏置项

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

推荐使用以下开发环境:

  • Python 3.8+
  • PyTorch 1.10+
  • Neo4j图数据库(用于知识图谱存储)
  • Flask或FastAPI(用于构建API服务)
  • Docker(用于容器化部署)

安装核心依赖:

pip install torch numpy neo4j flask flask-cors python-dotenv

5.2 源代码详细实现和代码解读

5.2.1 知识图谱构建
from neo4j import GraphDatabase
import os
from dotenv import load_dotenv

load_dotenv()

class KnowledgeGraphBuilder:
    def __init__(self):
        uri = os.getenv("NEO4J_URI")
        user = os.getenv("NEO4J_USER")
        password = os.getenv("NEO4J_PASSWORD")
        self.driver = GraphDatabase.driver(uri, auth=(user, password))
    
    def close(self):
        self.driver.close()
    
    def create_attraction(self, attraction_data):
        with self.driver.session() as session:
            session.write_transaction(self._create_attraction_node, attraction_data)
    
    @staticmethod
    def _create_attraction_node(tx, data):
        query = """
        CREATE (a:Attraction {
            id: $id,
            name: $name,
            description: $description,
            location: point({latitude: $lat, longitude: $lon}),
            rating: $rating,
            price: $price,
            category: $category,
            tags: $tags
        })
        """
        tx.run(query, **data)
    
    def create_relation(self, source_id, target_id, relation_type, properties=None):
        with self.driver.session() as session:
            session.write_transaction(
                self._create_relation,
                source_id, target_id, relation_type, properties or {}
            )
    
    @staticmethod
    def _create_relation(tx, source_id, target_id, relation_type, properties):
        query = """
        MATCH (a:Attraction {id: $source_id}), (b:Attraction {id: $target_id})
        MERGE (a)-[r:%s]->(b)
        SET r += $properties
        """ % relation_type
        tx.run(query, source_id=source_id, target_id=target_id, properties=properties)
    
    def build_sample_graph(self):
        # 示例景点数据
        attractions = [
            {
                "id": "a1",
                "name": "故宫博物院",
                "description": "中国最大的古代文化艺术博物馆",
                "lat": 39.916,
                "lon": 116.397,
                "rating": 4.8,
                "price": 60,
                "category": "历史文化",
                "tags": ["博物馆", "世界遗产", "历史建筑"]
            },
            # 更多景点数据...
        ]
        
        # 创建景点节点
        for attraction in attractions:
            self.create_attraction(attraction)
        
        # 创建景点间关系
        relations = [
            ("a1", "a2", "NEARBY", {"distance": 1.2, "time": 15}),
            # 更多关系数据...
        ]
        
        for source, target, rel_type, props in relations:
            self.create_relation(source, target, rel_type, props)
5.2.2 多智能体系统主控制器
from flask import Flask, request, jsonify
import threading
import time

app = Flask(__name__)

class MultiAgentSystem:
    def __init__(self):
        self.agents = {
            "user_profile": UserProfileAgent(),
            "nlp": NLPAgent(),
            "coordinator": RecommendationCoordinator(),
            "attraction": AttractionRecommendationAgent(),
            "route": RoutePlanningAgent(),
            "budget": BudgetManagementAgent()
        }
        self.shared_memory = {}
        self.lock = threading.Lock()
    
    def process_request(self, user_input, user_id):
        # 初始化共享内存
        self.shared_memory = {
            "user_input": user_input,
            "user_id": user_id,
            "intermediate_results": {},
            "final_recommendation": None
        }
        
        # 启动智能体处理流程
        threads = []
        
        # 用户画像智能体
        t1 = threading.Thread(
            target=self.agents["user_profile"].process,
            args=(self.shared_memory, self.lock)
        )
        threads.append(t1)
        
        # NLP智能体
        t2 = threading.Thread(
            target=self.agents["nlp"].process,
            args=(self.shared_memory, self.lock)
        )
        threads.append(t2)
        
        # 启动所有线程
        for t in threads:
            t.start()
        
        # 等待第一阶段智能体完成
        for t in threads:
            t.join()
        
        # 第二阶段智能体处理
        threads = []
        
        # 协调智能体
        t3 = threading.Thread(
            target=self.agents["coordinator"].process,
            args=(self.shared_memory, self.lock)
        )
        threads.append(t3)
        
        # 启动第二阶段线程
        for t in threads:
            t.start()
        
        # 等待协调智能体完成
        for t in threads:
            t.join()
        
        # 第三阶段智能体处理
        threads = []
        
        # 景点推荐智能体
        t4 = threading.Thread(
            target=self.agents["attraction"].process,
            args=(self.shared_memory, self.lock)
        )
        threads.append(t4)
        
        # 路线规划智能体
        t5 = threading.Thread(
            target=self.agents["route"].process,
            args=(self.shared_memory, self.lock)
        )
        threads.append(t5)
        
        # 预算管理智能体
        t6 = threading.Thread(
            target=self.agents["budget"].process,
            args=(self.shared_memory, self.lock)
        )
        threads.append(t6)
        
        # 启动第三阶段线程
        for t in threads:
            t.start()
        
        # 等待所有智能体完成
        for t in threads:
            t.join()
        
        # 返回最终推荐结果
        return self.shared_memory["final_recommendation"]

@app.route('/recommend', methods=['POST'])
def recommend():
    data = request.json
    user_input = data.get('input')
    user_id = data.get('user_id', 'anonymous')
    
    mas = MultiAgentSystem()
    recommendation = mas.process_request(user_input, user_id)
    
    return jsonify({
        "status": "success",
        "recommendation": recommendation
    })

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)

5.3 代码解读与分析

  1. 知识图谱构建

    • 使用Neo4j图数据库存储景点数据和关系
    • 每个景点作为节点,包含丰富的属性信息
    • 景点间关系(如NEARBY)表示它们的地理接近性和可达性
  2. 多智能体系统架构

    • 采用多线程实现智能体并行处理
    • 共享内存机制实现智能体间通信
    • 锁机制确保共享资源的安全访问
  3. 处理流程

    • 第一阶段:用户画像和NLP处理并行执行
    • 第二阶段:协调智能体整合初步结果
    • 第三阶段:各专业智能体协同生成最终推荐
  4. 扩展性设计

    • 新智能体可以方便地添加到系统中
    • 共享内存结构支持灵活的数据交换
    • REST API接口便于系统集成

6. 实际应用场景

6.1 个性化旅游路线推荐

系统可以根据用户偏好(如历史文化、自然风光等)、时间预算和经济预算,自动生成个性化的旅游路线。例如:

  • 为家庭用户推荐亲子友好的景点和活动
  • 为年轻游客推荐夜间娱乐和网红打卡地
  • 为老年游客推荐轻松舒适、医疗设施完善的路线

6.2 动态行程调整

结合实时数据(如天气、交通状况、景点拥挤度),系统可以动态调整推荐:

  • 雨天自动增加室内活动选项
  • 交通拥堵时重新规划路线顺序
  • 热门景点拥挤时建议替代方案

6.3 团体旅游协调

对于团体旅游,系统可以:

  • 协调不同成员的兴趣偏好
  • 优化集合点和时间安排
  • 提供分组活动建议

6.4 无障碍旅游规划

为特殊需求用户(如残障人士)提供:

  • 无障碍设施信息
  • 适合的交通方式
  • 便利的路线规划

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence》 - Jacques Ferber
  • 《Reinforcement Learning: An Introduction》 - Richard S. Sutton and Andrew G. Barto
  • 《Knowledge Graphs: Fundamentals, Techniques, and Applications》 - Mayank Kejriwal等
7.1.2 在线课程
  • Coursera: “Multi-Agent Systems” (University of London)
  • edX: “Reinforcement Learning Explained” (Microsoft)
  • Udacity: “Knowledge Graphs and Ontologies”
7.1.3 技术博客和网站
  • Towards Data Science (Medium)
  • The Gradient (AI research blog)
  • Neo4j Blog (图数据库应用)

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • Visual Studio Code (Python扩展)
  • PyCharm Professional (支持数据库和科学计算)
  • Jupyter Notebook (原型开发)
7.2.2 调试和性能分析工具
  • PyTorch Profiler
  • cProfile (Python性能分析)
  • Wireshark (网络通信分析)
7.2.3 相关框架和库
  • PyTorch Geometric (图神经网络)
  • Rasa (对话系统)
  • OSMnx (开源地图数据)

7.3 相关论文著作推荐

7.3.1 经典论文
  • “Value-Decomposition Networks For Cooperative Multi-Agent Learning” (2017)
  • “Graph Attention Networks” (2018)
  • “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” (2019)
7.3.2 最新研究成果
  • “Multi-Agent Reinforcement Learning for Personalized Travel Recommendation” (AAAI 2023)
  • “Knowledge-Enhanced Personalized Trip Recommendation” (CIKM 2023)
  • “Dynamic Multi-Agent Routing with Deep Reinforcement Learning” (IJCAI 2023)
7.3.3 应用案例分析
  • “AI-Powered Travel Planning at Scale: Expedia Case Study” (2022)
  • “Personalized Tourism Recommendation with Knowledge Graphs: A Booking.com Approach” (2023)
  • “Multi-Agent Systems for Smart City Tourism Applications” (IEEE IoT Journal 2023)

8. 总结:未来发展趋势与挑战

8.1 未来发展趋势

  1. 更强大的AIGC集成

    • 生成更自然、个性化的旅游描述
    • 自动生成旅游博客和社交媒体内容
    • 实时多语言翻译和本地化
  2. 多模态交互

    • 结合语音、图像和手势的交互方式
    • AR/VR技术提供沉浸式预览体验
    • 智能眼镜等可穿戴设备的集成
  3. 跨平台协作

    • 与交通、住宿、餐饮等系统的深度集成
    • 区块链技术确保数据安全和交易透明
    • 元宇宙中的虚拟旅游体验
  4. 持续学习和适应

    • 基于用户反馈的实时系统优化
    • 预测性推荐(预判用户未来需求)
    • 情感识别和情绪适应

8.2 主要挑战

  1. 数据隐私和安全

    • 保护用户敏感信息
    • 合规处理个人数据
    • 防止推荐系统被操纵
  2. 系统复杂性管理

    • 多智能体协调的复杂性
    • 实时性和准确性的平衡
    • 系统可解释性和透明度
  3. 文化和伦理考量

    • 避免偏见和歧视
    • 尊重当地文化和习俗
    • 可持续旅游的促进
  4. 技术整合难度

    • 异构系统的集成
    • 大规模知识图谱的维护
    • 边缘计算和云计算协同

9. 附录:常见问题与解答

Q1: 多智能体系统与传统推荐系统有何不同?

A1: 多智能体系统将推荐任务分解为多个专业化智能体协同完成,相比传统单一推荐系统具有以下优势:

  • 更好的可扩展性:可以方便地添加新功能智能体
  • 更高的灵活性:不同智能体可以采用最适合的算法
  • 更强的鲁棒性:单个智能体故障不会导致整个系统瘫痪
  • 更自然的模块化:符合实际旅游规划的多专业协作特点

Q2: 如何处理冷启动问题(新用户或新景点)?

A2: 系统采用多种策略应对冷启动:

  1. 对于新用户:

    • 通过对话系统快速获取关键偏好
    • 使用人口统计学相似用户的数据
    • 提供多样化初始选项观察用户反应
  2. 对于新景点:

    • 基于知识图谱的语义相似度推荐
    • 利用迁移学习从已有景点学习特征
    • 结合专家人工标注数据

Q3: 系统如何保证推荐的公平性和多样性?

A3: 系统采用以下机制:

  • 公平性约束:确保不同用户群体获得同等质量服务
  • 多样性奖励:在强化学习中增加多样性奖励项
  • 探索-利用平衡:定期尝试新组合,避免推荐陷入局部最优
  • 人工审核规则:设置某些不可逾越的底线规则

Q4: 系统的实时性能如何保证?

A4: 通过以下优化确保实时性能:

  1. 架构层面:

    • 微服务架构实现水平扩展
    • 智能体间异步通信
    • 热点数据缓存
  2. 算法层面:

    • 离线预计算常见推荐模式
    • 在线增量更新
    • 近似算法和采样技术
  3. 基础设施:

    • GPU加速深度学习推理
    • 分布式图数据库
    • 边缘计算处理地理位置相关计算

10. 扩展阅读 & 参考资料

  1. 扩展阅读:

    • 《Artificial Intelligence for Tourism》 - Michał Żemła
    • 《Multi-Agent Systems for Tourism and Entertainment》 - Springer LNCS系列
    • 《Knowledge Graphs in Recommender Systems》 - ACM Computing Surveys综述
  2. 开源项目:

    • OpenTripPlanner (开源路线规划引擎)
    • RecBole (推荐系统基准框架)
    • PyMARL (多智能体强化学习库)
  3. 行业报告:

    • “The Future of AI in Travel” (Phocuswright 2023)
    • “Digital Transformation in Tourism” (WTTC 2023)
    • “AI-Generated Content Market Trends” (Gartner 2023)
  4. 技术标准:

    • ISO 18513 (旅游服务术语标准)
    • W3C Semantic Web标准
    • OpenAPI规范(API设计)
  5. 数据集:

    • TripAdvisor数据集
    • Yelp开放数据集
    • OpenStreetMap地理数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值