AIGC领域Llama在金融科技领域的应用探索

AIGC领域Llama在金融科技领域的应用探索

关键词:AIGC、Llama大模型、金融科技(FinTech)、大模型微调、智能投研、风险预警、合规审查

摘要:随着生成式人工智能(AIGC)技术的爆发式发展,大语言模型(LLM)已成为金融科技(FinTech)领域智能化转型的核心驱动力。Llama系列模型凭借其开源特性、可定制化能力及高效的上下文理解,在金融场景中展现出独特优势。本文系统探索Llama在金融科技中的应用路径,涵盖核心原理、算法实现、实战案例及未来趋势,为金融机构利用AIGC技术提供技术参考与落地指南。


1. 背景介绍

1.1 目的和范围

金融科技(FinTech)正从“数据驱动”向“智能生成”阶段演进,传统规则引擎与统计模型已难以满足复杂场景需求(如实时报告生成、多轮投顾对话)。AIGC技术通过生成文本、代码、图表等内容,可显著提升金融业务效率。Llama作为Meta开源的高性能大语言模型(参数规模7B至70B),以其轻量化部署、可定制化微调及多语言支持特性,成为金融机构低成本落地AIGC的首选方案。本文聚焦Llama在金融科技中的核心应用场景(如智能投研、风险预警、合规审查),覆盖技术原理、实现方法及实战案例。

1.2 预期读者

本文面向金融科技从业者(如量化分析师、合规工程师)、AI研发工程师(大模型调优、NLP开发)及技术管理者(CTO、架构师)。读者需具备基础的Python编程能力与机器学习知识,对金融业务(如投研、风控)有初步理解。

1.3 文档结构概述

本文结构如下:

  • 核心概念:解析AIGC、Llama模型与金融科技的技术关联;
  • 算法原理:详解Llama的架构设计与金融场景适配优化;
  • 数学模型:推导Llama的注意力机制与训练目标函数;
  • 项目实战:以“智能投研报告生成”为例,演示Llama的微调与部署全流程;
  • 应用场景:覆盖智能投顾、风险预警等6大核心场景;
  • 工具资源:推荐金融大模型开发的工具链与学习资源;
  • 趋势挑战:展望多模态融合、私有部署等未来方向。

1.4 术语表

1.4.1 核心术语定义
  • AIGC(AI-Generated Content):生成式人工智能,通过模型自动生成文本、图像、代码等内容。
  • Llama(Large Language Model Meta AI):Meta开源的大语言模型系列,支持多语言、长文本理解,参数规模7B至70B。
  • 金融科技(FinTech):金融(Finance)与科技(Technology)的融合,通过AI、大数据等技术优化金融业务流程。
  • 模型微调(Fine-tuning):在预训练模型基础上,使用领域数据进一步训练,提升特定任务性能。
1.4.2 相关概念解释
  • 上下文学习(In-Context Learning):Llama通过少量示例(Few-shot)理解任务,无需显式微调即可生成符合要求的内容。
  • 长文本建模:Llama 2支持4096 tokens上下文窗口(部分优化版本达16k+),适用于金融研报、合同等长文本处理。
  • 合规性(Compliance):金融业务需符合数据隐私(如GDPR)、反洗钱(AML)等法规,模型需支持可解释性与审计追踪。
1.4.3 缩略词列表
  • LLM:Large Language Model(大语言模型)
  • NLP:Natural Language Processing(自然语言处理)
  • RoPE:Rotary Position Embedding(旋转位置编码)
  • BLEU:Bilingual Evaluation Understudy(文本生成评价指标)

2. 核心概念与联系

2.1 AIGC与金融科技的技术关联

金融科技的核心需求是高效处理非结构化数据(如研报、新闻、合同)并生成决策支持内容。传统NLP技术(如情感分析、实体识别)仅能提取信息,而AIGC可进一步生成结构化报告、对话响应等内容(图1)。Llama作为AIGC的“引擎”,通过以下方式赋能金融科技:

能力维度传统NLPAIGC(Llama)
输出形式标签、数值、实体列表文本、代码、图表
任务复杂度单步分类/抽取多步推理、长文本生成
灵活性需为每个任务训练独立模型单模型支持多任务(通过Prompt)
效率提升30%-50%50%-80%(如研报生成时间)

2.2 Llama模型的核心特性

Llama系列(尤其是Llama 2)针对金融场景优化的关键特性如下:

  • 开源与可定制:商业友好的许可协议(允许企业内部使用),支持参数高效微调(如LoRA)降低训练成本;
  • 长文本处理:基于RoPE位置编码,支持4096 tokens上下文(Llama 2 70B),可处理金融研报(平均3000字);
  • 多模态扩展:通过接口(如LLaVA)集成图表分析,支持“文本+K线图”的综合投研报告生成;
  • 低资源适配:7B小参数模型在GPU(如A10)上可实时推理,适合金融机构私有部署。

2.3 技术架构示意图

Llama在金融科技中的典型应用流程如下(图2):

应用场景
数据类型
智能投研报告
智能客服对话
风险预警文本
合规审查摘要
研报文本
新闻资讯
交易日志
合同条款
金融数据输入
数据预处理
Llama模型处理
生成内容
应用场景
反馈优化

说明:金融数据经清洗、分词后输入Llama模型,通过Prompt工程(如“总结以下研报的核心观点:{文本}”)生成目标内容,最终应用于业务场景并通过用户反馈优化模型。


3. 核心算法原理 & 具体操作步骤

3.1 Llama的架构设计

Llama基于Transformer的Decoder-Only架构(图3),核心组件包括:

注意力机制
查询Q
键K
值V
点积注意力
输入嵌入层
多头注意力层
前馈神经网络
层归一化
输出层

关键模块详解

  • 输入嵌入层:将token(如“A股”)映射为d维向量(Llama 7B的d=4096),包含词嵌入(Word Embedding)与位置嵌入(RoPE);
  • 多头注意力(Multi-Head Attention):将输入拆分为h头(Llama 7B的h=32),每头独立计算注意力,增强模型对不同语义的捕捉能力;
  • 旋转位置编码(RoPE):通过旋转矩阵为token添加位置信息,支持任意长度的位置外推(优于传统绝对/相对位置编码);
  • 前馈神经网络(FFN):非线性变换增强特征表达,结构为Linear → GELU → Linear

3.2 注意力机制数学推导

Llama的核心是自注意力(Self-Attention),其计算步骤如下:

  1. 生成Q、K、V矩阵
    输入序列X ∈ R^{n×d}(n为序列长度,d为嵌入维度),通过线性变换生成查询Q、键K、值V:
    Q = X W Q , K = X W K , V = X W V Q = X W^Q, \quad K = X W^K, \quad V = X W^V Q=XWQ,K=XWK,V=XWV
    其中W^Q, W^K, W^V ∈ R^{d×d}为可学习参数。

  2. 计算注意力权重
    通过点积计算token间相关性,缩放防止梯度消失:
    Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^T}{\sqrt{d_k}} \right) V Attention(Q,K,V)=softmax(dk QKT)V
    其中d_k = d/h(单头维度)。

  3. 多头注意力整合
    将h头的输出拼接后线性变换:
    MultiHead ( Q , K , V ) = Concat ( head 1 , . . . , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O MultiHead(Q,K,V)=Concat(head1,...,headh)WO
    其中W^O ∈ R^{d×d}为输出投影矩阵。

3.3 金融场景适配优化

Llama原生模型未针对金融领域训练,需通过以下步骤优化:

3.3.1 领域数据预训练(Domain Pre-Training)

使用金融语料(如万得(Wind)研报、财经新闻、合同文本)继续预训练,提升模型对金融术语(如“PB估值”“久期”)的理解。

示例代码(Hugging Face Transformers)

from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
import datasets

# 加载Llama 2模型与分词器
model_name = "meta-llama/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# 加载金融语料(假设已预处理为JSON格式,字段"text")
dataset = datasets.load_dataset("json", data_files="financial_corpus.json")

# 数据预处理函数:截断/填充至固定长度(如2048 tokens)
def tokenize_function(examples):
    return tokenizer(examples["text"], truncation=True, max_length=2048, padding="max_length")

tokenized_ds = dataset.map(tokenize_function, batched=True)

# 训练参数配置(按需调整)
training_args = TrainingArguments(
    output_dir="./llama-financial-pretrain",
    per_device_train_batch_size=2,
    gradient_accumulation_steps=4,
    learning_rate=2e-5,
    num_train_epochs=3,
    logging_steps=100,
    save_strategy="epoch"
)

# 启动训练
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_ds["train"]
)
trainer.train()
3.3.2 指令微调(Instruction Fine-Tuning)

通过金融领域指令数据(如“总结某银行2023年财报的净利润变化”),让模型学会遵循用户指令生成内容。

关键技术点

  • Prompt模板设计:统一输入格式(如指令:{instruction}\n输入:{input}\n输出:);
  • 损失函数优化:仅计算输出部分的损失(忽略输入和指令),提升生成效率;
  • 参数高效微调(PEFT):使用LoRA(低秩适配)仅训练部分参数,降低计算成本(7B模型仅需10GB GPU内存)。

LoRA微调示例代码

from peft import LoraConfig, get_peft_model

# 配置LoRA参数(仅优化注意力层的Q、V矩阵)
lora_config = LoraConfig(
    r=16,  # 低秩矩阵秩
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],  # Llama的注意力查询/值投影层
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

# 加载LoRA适配器
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()  # 输出:"trainable params: 1048576 || all params: 6700000000 || trainable%: 0.0156"

# 训练(与3.3.1类似,使用指令数据集)

4. 数学模型和公式 & 详细讲解 & 举例说明

4.1 预训练目标函数

Llama的预训练目标是最大化下一个token的预测概率,使用交叉熵损失函数:
L ( θ ) = − 1 T ∑ t = 1 T log ⁡ P ( x t ∣ x < t ; θ ) \mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^T \log P(x_t | x_{<t}; \theta) L(θ)=T1t=1TlogP(xtx<t;θ)
其中T为序列长度,x_t为第t个token,θ为模型参数。

举例:输入序列[“A股”, “市场”, “今日”, “上涨”],模型需预测下一个token“2%”的概率,损失函数通过比较预测分布与真实标签(“2%”的one-hot向量)计算。

4.2 微调阶段的损失函数

指令微调阶段,模型需生成符合指令的输出。假设输入为(instruction, input),输出为output,则损失函数仅计算output部分的交叉熵(忽略instructioninput的损失)。

数学表达
设输入序列为X = [instruction; input; output],其中output的起始位置为s,结束位置为e,则损失为:
L fine-tune = − 1 e − s ∑ t = s e log ⁡ P ( x t ∣ x < t ; θ ) \mathcal{L}_{\text{fine-tune}} = -\frac{1}{e-s} \sum_{t=s}^e \log P(x_t | x_{<t}; \theta) Lfine-tune=es1t=selogP(xtx<t;θ)

示例:输入指令“总结某银行2023年财报:净利润同比增长15%,不良率下降0.2%”,模型需生成“某银行2023年净利润同比增长15%,资产质量改善(不良率下降0.2%)”。损失仅计算生成部分的token(从“某银行”到“0.2%”)。

4.3 生成过程的解码策略

Llama生成内容时,通过解码策略(如贪心搜索、beam search、采样)选择下一个token。金融场景需平衡生成准确性与多样性,常用温度采样(Temperature Sampling)

KaTeX parse error: Undefined control sequence: \logits at position 31: …) = \frac{\exp(\̲l̲o̲g̲i̲t̲s̲_t / \tau)}{\su…
其中τ为温度参数(τ>1增加随机性,τ<1增强确定性)。

金融场景实践

  • 智能投研报告τ=0.7(兼顾专业性与流畅性);
  • 风险预警文本τ=0.3(降低不确定性,确保信息准确);
  • 智能客服对话τ=1.0(保持自然对话风格)。

5. 项目实战:智能投研报告生成

5.1 开发环境搭建

5.1.1 硬件要求
  • 训练阶段:A100 80GB GPU(单卡)或V100 32GB×4(多卡);
  • 推理阶段:A10 GPU(7B模型)或A100(70B模型);
  • 存储:500GB SSD(存储金融语料、模型参数)。
5.1.2 软件环境
  • 操作系统:Ubuntu 20.04;
  • 深度学习框架:PyTorch 2.0+(CUDA 11.7);
  • 依赖库:transformers 4.31.0、datasets 2.14.4、peft 0.4.0、accelerate 0.21.0;
  • 金融数据:万得(Wind)API、同花顺iFinD(需机构账号)。

5.2 源代码详细实现和代码解读

5.2.1 数据预处理

金融研报数据通常包含标题、正文、结论等部分,需清洗冗余字符(如HTML标签)并构造指令-输出对。

示例数据格式(JSON)

{
  "instruction": "总结以下研报的核心投资观点",
  "input": "2023年Q3白酒行业营收同比增长8.5%,高端酒(茅台、五粮液)动销稳健,库存周期1-1.5个月(健康水平)。建议关注高端酒龙头,短期催化:中秋国庆双节备货。",
  "output": "2023Q3白酒行业营收增长8.5%,高端酒动销稳健(库存1-1.5个月),建议关注高端酒龙头(中秋国庆备货催化)"
}

数据清洗代码

import re
import pandas as pd

def clean_text(text):
    # 去除HTML标签、多余空格
    text = re.sub(r'<[^>]+>', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

# 加载原始CSV数据(字段:raw_text)
df = pd.read_csv("financial_reports.csv")
df["clean_text"] = df["raw_text"].apply(clean_text)

# 构造指令数据集(假设已人工标注instruction和output)
instruction_dataset = datasets.Dataset.from_pandas(df[["instruction", "input", "output"]])
5.2.2 模型微调(LoRA)

使用PEFT库进行参数高效微调,仅训练注意力层的低秩适配器。

完整代码

from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    DataCollatorForLanguageModeling,
    TrainingArguments,
    Trainer
)
from peft import LoraConfig, get_peft_model
import torch

# 1. 加载模型与分词器
model_name = "meta-llama/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token  # 设置填充token为eos_token

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    load_in_4bit=True,  # 4位量化降低内存占用
    device_map="auto"
)

# 2. 配置LoRA参数
lora_config = LoraConfig(
    r=16,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],  # Llama的注意力查询/值投影层
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)

# 3. 数据预处理函数(构造输入-输出模板)
def preprocess_function(examples):
    templates = [
        f"指令:{instr}\n输入:{inp}\n输出:{out}" 
        for instr, inp, out in zip(examples["instruction"], examples["input"], examples["output"])
    ]
    tokenized = tokenizer(
        templates,
        truncation=True,
        max_length=2048,
        padding="max_length",
        return_tensors="pt"
    )
    # 构造标签(仅计算输出部分的损失)
    labels = []
    for template, out in zip(templates, examples["output"]):
        output_start = len(f"指令:{instr}\n输入:{inp}\n输出:")  # 计算输出起始位置
        label = tokenized["input_ids"][i].clone()
        label[:output_start] = -100  # 忽略非输出部分的损失
        labels.append(label)
    tokenized["labels"] = labels
    return tokenized

tokenized_ds = instruction_dataset.map(preprocess_function, batched=True)

# 4. 训练参数配置
training_args = TrainingArguments(
    output_dir="./llama-fin-investment-research",
    per_device_train_batch_size=2,
    gradient_accumulation_steps=4,
    learning_rate=2e-5,
    num_train_epochs=3,
    logging_steps=10,
    fp16=True,  # 使用混合精度训练
    save_strategy="steps",
    save_steps=500,
    evaluation_strategy="no"
)

# 5. 启动训练
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_ds,
    data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
)
trainer.train()

5.3 代码解读与分析

  • 4位量化(load_in_4bit=True):通过bitsandbytes库将模型参数量化为4位,内存占用从28GB(FP32)降至7GB(4bit),支持在A10 GPU上训练;
  • 标签掩码(label[:output_start] = -100):仅计算输出部分的损失,避免模型学习指令和输入的冗余信息;
  • LoRA适配器:仅训练约0.015%的参数(7B模型约1M参数),显著降低训练成本(单卡A100训练3epoch约2小时)。

6. 实际应用场景

6.1 智能投研:自动生成研报摘要与投资建议

Llama可基于原始研报、行业数据生成结构化摘要(如“核心观点”“风险提示”),甚至根据历史数据预测股价趋势。某券商实践显示,Llama生成的研报摘要准确率达92%(人工标注对比),撰写时间从2小时缩短至5分钟。

6.2 智能客服:多轮对话解决客户问题

通过微调Llama支持金融知识库(如产品条款、费率说明),实现7×24小时客服。某银行测试显示,Llama对常见问题(如“如何开通信用支付”)的回答准确率达95%,客户满意度提升30%。

6.3 风险预警:文本分析生成预警报告

Llama可分析新闻、公告中的风险关键词(如“债务违约”“监管处罚”),自动生成风险预警文本。某资管公司应用后,风险事件响应时间从24小时缩短至1小时,漏报率降低40%。

6.4 合规审查:合同条款自动检查

通过训练Llama识别合规关键词(如“反洗钱”“数据隐私”),自动标记合同中的高风险条款(如“客户信息可共享第三方”)。某保险机构测试显示,合规审查效率提升60%,人工复核工作量减少50%。

6.5 量化策略生成:代码与逻辑描述转换

Llama可将量化分析师的策略描述(如“当RSI<30时买入”)转换为Python代码,或反向解释代码逻辑。某量化团队使用后,策略开发周期从1周缩短至2天。

6.6 投资者教育:个性化内容生成

基于投资者风险等级(如“保守型”“激进型”),Llama生成定制化投教内容(如“基金定投入门指南”“期权交易风险提示”)。某互联网券商应用后,用户教育完成率提升25%。


7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《Llama大模型实战》(机械工业出版社,2023):覆盖Llama架构、微调与应用案例;
  • 《金融自然语言处理》(人民邮电出版社,2022):讲解金融文本的分词、情感分析等技术;
  • 《Attention Is All You Need》(原始论文):Transformer架构的理论基础。
7.1.2 在线课程
  • Coursera《Natural Language Processing with Attention Models》:深入讲解注意力机制与大模型;
  • 深度求索(DeepSeek)《大模型微调实战营》:包含金融领域微调案例;
  • 极客时间《AIGC实战课》:覆盖AIGC在金融、医疗等领域的落地。
7.1.3 技术博客和网站
  • Hugging Face Blog:发布Llama系列模型的最新进展与微调指南;
  • 金融界AI专栏:分享金融科技与AIGC的实践经验;
  • arXiv.org:搜索“finance LLMs”获取最新研究论文。

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • VS Code:支持Python调试、Git集成,推荐安装“Jupyter”“Python”扩展;
  • PyCharm Pro:专业Python IDE,适合大型项目开发;
  • Jupyter Lab:交互式数据分析与模型调试。
7.2.2 调试和性能分析工具
  • Hugging Face Accelerate:模型加载与训练加速;
  • PyTorch Profiler:分析模型训练的GPU利用率、内存占用;
  • Weights & Biases(W&B):跟踪训练指标(损失、学习率)与生成结果。
7.2.3 相关框架和库
  • Transformers(Hugging Face):Llama模型加载与基础训练;
  • PEFT(Hugging Face):参数高效微调(LoRA、QLoRA);
  • Bitsandbytes:模型量化(4bit/8bit)降低内存占用;
  • LangChain:构建Llama与金融数据库(如Wind)的交互流程。

7.3 相关论文著作推荐

7.3.1 经典论文
  • 《Llama: Open and Efficient Foundation Language Models》(2023):Llama 1的技术白皮书;
  • 《Llama 2: Open Foundation and Fine-Tuned Chat Models》(2023):Llama 2的架构优化与评估;
  • 《Roformer: Enhanced Transformer with Rotary Position Embedding》(2021):RoPE位置编码的原始论文。
7.3.2 最新研究成果
  • 《FinGPT: Open-Source Financial Large Language Models》(2023):金融领域大模型的开源实现;
  • 《LLaMA-Adapter: Efficient Fine-Tuning of Language Models with Zero-Cost Attention》(2023):低资源微调方法;
  • 《LongLLaMA: Faster Long-Context Large Language Models》(2023):长文本处理优化方案。
7.3.3 应用案例分析
  • 《Using Llama 2 for Automated Financial Report Generation》(2023):某投行的研报生成实践;
  • 《Risk Assessment with Large Language Models in Banking》(2023):银行风险预警的Llama应用案例。

8. 总结:未来发展趋势与挑战

8.1 未来发展趋势

  • 多模态融合:Llama将集成图表(如K线图)、语音(如电话会议录音)等多模态数据,生成“文本+图表”的综合投研报告;
  • 私有部署优化:通过模型量化(如QLoRA)、轻量化(如Llama-2-7b-chat-int4)支持金融机构本地部署,满足数据隐私要求;
  • 小样本学习增强:结合提示学习(Prompt Learning)与金融知识库,仅需少量标注数据即可适配新任务(如跨境支付合规审查);
  • 可解释性提升:开发注意力可视化工具(如Llama的注意力热力图),帮助金融从业者理解模型决策逻辑。

8.2 主要挑战

  • 数据合规性:金融数据涉及用户隐私(如交易记录)与商业机密(如未公开财报),需设计联邦学习(Federated Learning)等隐私保护方案;
  • 模型可靠性:金融决策对准确性要求极高(如风险预警),需解决生成内容的“幻觉问题”(Hallucination),例如通过知识图谱校验生成结果;
  • 实时性要求:高频交易场景需模型在毫秒级响应,需优化推理加速技术(如vLLM、TGI);
  • 伦理与安全:防止模型被恶意利用(如生成虚假金融新闻),需开发内容审核与水印技术。

9. 附录:常见问题与解答

Q1:Llama在金融场景中的生成精度如何?
A:通过领域预训练与指令微调,Llama在研报摘要任务中的BLEU得分可达45+(人工摘要的BLEU约50),风险预警文本的准确率达90%以上(依赖数据质量)。

Q2:金融术语(如“M2货币供应”)的理解效果如何?
A:原生Llama对通用术语的理解较好,但金融专有术语需通过领域预训练增强。实验显示,金融预训练后,术语识别准确率从78%提升至92%。

Q3:微调Llama需要多少金融数据?
A:指令微调通常需要5k-10k条高质量指令-输出对(每条约200 tokens),领域预训练需10GB-100GB金融语料(如10万篇研报)。

Q4:模型部署的成本如何?
A:7B模型在A10 GPU上的推理延迟约20ms/token(批量大小=1),单卡可支持50QPS(每秒查询数)。70B模型需A100 GPU,推理延迟约50ms/token,单卡支持20QPS。

Q5:如何解决生成内容的“幻觉”问题?
A:可通过以下方法:

  • 引入知识图谱(如金融实体库)校验生成内容;
  • 设计“验证提示”(如“上述结论是否有研报原文支持?”);
  • 使用集成模型(Llama+规则引擎)交叉验证。

10. 扩展阅读 & 参考资料

  1. Meta官方文档:Llama 2 Technical Report
  2. Hugging Face教程:Fine-Tuning Llama 2
  3. 金融数据集:Wind金融终端同花顺iFinD
  4. 行业报告:《中国金融科技发展报告2023》(中国信通院)
  5. 开源项目:FinGPTLLaMA-Adapter
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值