5个必知的AIGC工具,轻松打造爆款虚拟偶像

5个必知的AIGC工具,轻松打造爆款虚拟偶像

关键词:AIGC工具、虚拟偶像、AI生成内容、数字人建模、智能交互、语音合成、动画生成

摘要:本文深度解析5款前沿AIGC工具在虚拟偶像打造中的核心应用,涵盖从形象设计、语音生成到动态交互的全流程技术实现。通过MidJourney、D-ID、MetaHuman、Runway ML、VoiceMaker等工具的原理剖析、操作指南及实战案例,揭示如何利用AI技术高效构建具有商业价值的虚拟偶像,同时探讨行业应用场景与未来发展趋势。

1. 背景介绍

1.1 目的和范围

随着元宇宙概念的普及和数字经济的发展,虚拟偶像作为连接虚拟世界与现实商业的重要载体,正成为品牌营销、娱乐内容的新风口。本文聚焦AIGC(人工智能生成内容)技术在虚拟偶像全生命周期中的关键工具,系统性解析从形象设计、语音生成、动作建模到智能交互的核心技术方案,帮助开发者、设计师及运营人员快速掌握高效构建虚拟偶像的技术栈。

1.2 预期读者

  • 数字内容创作者:希望通过AI工具提升虚拟偶像设计效率的插画师、3D建模师
  • 技术开发者:从事数字人开发、智能交互系统设计的工程师
  • 品牌运营人员:需要利用虚拟偶像进行营销推广的市场从业者
  • 学术研究者:关注AIGC技术在数字人领域应用的科研人员

1.3 文档结构概述

本文按照虚拟偶像打造的核心流程,依次解析5款关键AIGC工具的技术原理、操作指南及实战应用,结合具体代码示例和项目案例,最后探讨行业应用场景与未来趋势。核心内容包括:

  1. 形象设计工具:MidJourney的AI图像生成技术
  2. 语音驱动工具:D-ID的面部动画合成方案
  3. 高保真建模工具:MetaHuman的智能角色生成流程
  4. 多模态创作工具:Runway ML的全流程功能集成
  5. 语音合成工具:VoiceMaker的个性化声音建模

1.4 术语表

1.4.1 核心术语定义
  • AIGC(人工智能生成内容):通过机器学习算法自动生成文本、图像、音频、视频等内容的技术
  • 虚拟偶像:基于计算机图形学和AI技术构建的数字化人物形象,具备视觉呈现、语音交互等功能
  • 数字人:通过CG、AI等技术创建的具有人类外观的虚拟角色,分为2D、3D及超写实等类型
  • TTS(文本转语音):将文字转换为自然语音的技术,包含声学模型和语音合成算法
  • 表情驱动:通过语音或动作数据驱动虚拟角色面部表情变化的技术
1.4.2 相关概念解释
  • 生成对抗网络(GAN):用于图像生成的核心算法,通过生成器与判别器的对抗训练提升输出质量
  • 扩散模型(Diffusion Model):近年兴起的图像生成模型,相比GAN能生成更高分辨率和细节丰富的图像
  • 神经辐射场(NeRF):用于三维场景重建和数字人建模的技术,通过神经网络表示物体的辐射场
1.4.3 缩略词列表
缩写全称说明
GANGenerative Adversarial Network生成对抗网络
TTSText-to-Speech文本转语音技术
VAEVariational Autoencoder变分自动编码器
LLMLarge Language Model大型语言模型

2. 核心概念与联系:虚拟偶像的AIGC技术架构

虚拟偶像的构建涉及多模态内容生成与交互技术,其核心技术架构可分为数据层模型层应用层三个层次:

2.1 技术架构示意图

graph TD
    A[数据层] --> B[图像数据集]
    A --> C[语音语料库]
    A --> D[动作捕捉数据]
    B --> E[形象设计工具(MidJourney)]
    C --> F[语音合成工具(VoiceMaker)]
    D --> G[动作生成工具(Runway ML)]
    E --> H[2D/3D形象模型]
    F --> I[个性化语音模型]
    G --> J[动作/表情驱动模型]
    H --> K[虚拟偶像本体]
    I --> K
    J --> K
    K --> L[应用层]
    L --> M[直播带货]
    L --> N[短视频创作]
    L --> O[游戏角色]
    L --> P[智能客服]

2.2 核心技术关联

  1. 形象生成:通过MidJourney等工具基于文本描述生成2D概念图,再通过MetaHuman转化为3D高保真模型
  2. 语音驱动:D-ID利用语音特征生成面部表情动画,实现“口型同步+表情自然过渡”
  3. 多模态融合:Runway ML整合图像、语音、视频处理模块,支持从静态图生成动态视频
  4. 交互增强:VoiceMaker生成的个性化语音与LLM结合,实现虚拟偶像的智能对话能力

3. 核心工具解析与操作指南

3.1 形象设计神器:MidJourney(2D概念图生成)

3.1.1 技术原理

MidJourney基于扩散模型(Diffusion Model),通过对高斯噪声逐步去噪生成高分辨率图像。支持通过自然语言提示词(Prompt)控制风格、构图、细节,核心参数包括:

  • 风格参数:–style raw(写实)、–stylize 1000(艺术化)
  • 比例参数:–aspect 16:9(横版)、–ar 2:3(竖版)
  • 质量参数:–quality 2(提高细节渲染)
3.1.2 虚拟偶像形象设计流程

Step 1:基础Prompt构建

# 基础提示词模板
prompt = "A 22-year-old female virtual idol, wearing a cyberpunk outfit, silver hair, big digital eyes, " \
         "shiny skin, standing in a neon-lit city, ultra-detailed, 8K, --style raw --quality 2"

Step 2:风格优化(以赛博朋克风为例)

# 添加风格强化参数
prompt = prompt + " --v 5 --stylize 750 --no background"  # 使用MJ v5版本,去除背景干扰

Step 3:生成变体与细节调整
通过MidJourney的U1-U4按钮选择最优生成图,再用局部重绘(Inpainting)调整面部细节,如瞳孔光效、发型层次。

3.1.3 Python API调用示例(需申请API权限)
import requests
import json

def generate_midjourney_image(prompt, api_key):
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }
    payload = {
        "prompt": prompt,
        "num_images": 1,
        "size": "1024x1024",
        "style": "raw"
    }
    response = requests.post(
        "https://api.midjourney.com/v1/images/generate",
        headers=headers,
        json=payload
    )
    return response.json()

# 使用示例
api_key = "your_midjourney_api_key"
prompt = "Cyberpunk virtual idol with glowing tattoos, futuristic hairstyle, --v 5 --quality 2"
response = generate_midjourney_image(prompt, api_key)
image_url = response["images"][0]["url"]

3.2 语音驱动表情:D-ID(动态面部动画生成)

3.2.1 核心技术

D-ID采用语音表情同步算法,通过分析语音的韵律、音高、语速等特征,驱动虚拟偶像的面部关键点(如嘴唇、眉毛、眼睛)运动。其技术栈包括:

  1. 语音特征提取:使用Mel频谱图(Mel-spectrogram)解析语音信号
  2. 面部关键点检测:基于MediaPipe的68点面部 landmark 模型
  3. 时序动态建模:通过LSTM网络生成连贯的表情过渡动画
3.2.2 操作步骤(以视频制作为例)

Step 1:准备素材

  • 静态形象图(PNG格式,建议分辨率1024x1024)
  • 语音文件(WAV格式,采样率44.1kHz)

Step 2:API调用生成视频

import requests

def generate_did_video(image_url, voice_url, api_key):
    url = "https://api.d-id.com/talks"
    headers = {
        "accept": "application/json",
        "authorization": f"Basic {api_key}",
        "content-type": "application/json"
    }
    payload = {
        "source_url": image_url,
        "audio_url": voice_url,
        "config": {
            "fluent": True,  # 启用流畅表情模式
            "expressiveness": 0.8  # 表情丰富度(0-1)
        }
    }
    response = requests.post(url, json=payload, headers=headers)
    return response.json()

# 使用示例
api_key = "your_did_api_key"
image_url = "https://example.com/idol.png"
voice_url = "https://example.com/voice.wav"
video_response = generate_did_video(image_url, voice_url, api_key)
video_url = video_response["result_url"]
3.2.3 效果优化技巧
  • 面部关键点标注:对复杂发型或遮挡区域,使用D-ID的在线编辑器手动调整关键点
  • 语音预处理:通过Praat软件去除语音噪声,提升表情同步精度
  • 多版本生成:对比不同expressiveness参数(如0.6/0.8/1.0)的输出效果

3.3 超写实建模:MetaHuman(3D数字人快速生成)

3.3.1 技术优势

MetaHuman基于Epic Games的MetaHuman框架,整合AI驱动的面部建模、身体姿态生成和材质渲染技术,核心特点:

  • AI驱动的面部细节:自动生成皮肤纹理、毛孔细节、虹膜反光
  • 跨平台兼容性:支持导出到Unreal Engine、Blender、Maya等工具
  • 表情迁移:通过手机摄像头捕捉真人表情驱动虚拟角色
3.3.2 建模流程(以UE引擎为例)

Step 1:创建MetaHuman项目

  1. 登录MetaHuman Creator官网,选择“Create New MetaHuman”
  2. 输入基础参数:性别(Female)、年龄(20-25)、人种(East Asian)

Step 2:AI辅助细节调整

  • 面部特征:通过滑动条调整“Eye Shape”(眼型)、“Nose Width”(鼻宽)
  • 发型设计:从预设库中选择“Cyberpunk Long Hair”,调整发色为#9932CC(紫蓝色)
  • 材质优化:启用“Subsurface Scattering”(次表面散射)增强皮肤真实感

Step 3:导出与引擎集成

# Unreal Engine蓝图脚本示例(加载MetaHuman模型)
Event BeginPlay
    LoadActor "MetaHuman/Idol_Model.uasset" as MetaHumanActor
    AttachComponent MetaHumanFaceComponent to MetaHumanActor
    ConnectFaceAnimationInput From DID_Video_FaceData
End Event
3.3.3 硬件配置建议
  • 显卡:NVIDIA RTX 3090及以上(支持光线追踪优化渲染)
  • 内存:64GB+(处理高分辨率纹理数据)
  • 存储:高速NVMe SSD(建议512GB以上空间存放模型资源)

3.4 多模态创作平台:Runway ML(全流程功能集成)

3.4.1 核心模块

Runway ML提供超过50个AI模型,覆盖虚拟偶像制作的关键环节:

  1. Image-to-Video:将MidJourney生成的静态图转化为动态视频(如眨眼、呼吸效果)
  2. Motion Capture:通过手机摄像头捕捉动作,驱动3D模型肢体运动
  3. Style Transfer:将真实人物视频风格迁移到虚拟偶像,实现表情自然过渡
3.4.2 动态视频生成案例

Step 1:静态图动态化(使用Video Inpainting模型)

  1. 上传MidJourney生成的静态立绘(需包含透明背景)
  2. 在时间轴上标记关键动作:眨眼(第2秒)、头部微转(第4-6秒)
  3. 调整参数:Motion Smoothness=0.7(动作流畅度)、Detail Preservation=0.9(细节保留)

Step 2:语音 lip-sync(使用Lip Sync模型)

# Runway ML API调用(语音同步口型)
import runway
from runway import image, audio, video

@runway.task("lip_sync", inputs={"image": image, "audio": audio}, outputs={"video": video})
def lip_sync(image_path, audio_path):
    # 内部调用Runway预训练模型
    result_video = runway.run_model("lip-sync", {"image": image_path, "audio": audio_path})
    return result_video

# 本地运行示例
runway.start()
3.4.3 工作流优化技巧
  • 模型串联:通过Runway的Canvas界面,将“Image Generation”→“Video Animation”→“Color Correction”模块串联成流水线
  • 参数共享:在不同模块间共享面部关键点数据,减少重复标注工作
  • 版本控制:利用Runway的项目历史功能,对比不同参数配置的输出效果

3.5 个性化语音生成:VoiceMaker(声音克隆与合成)

3.5.1 技术原理

VoiceMaker基于**神经声码器(Neural Vocoder)说话人嵌入(Speaker Embedding)**技术,实现高精度语音合成:

  1. 声音克隆:通过少量样本(5-10分钟)提取说话人特征向量
  2. 情感建模:在输入文本中添加情感标签(如“happy”“angry”“calm”)
  3. 韵律调整:支持控制语速(0.8x-1.2x)、音高(±20Hz)
3.5.2 模型训练流程

Step 1:数据准备

  • 采集目标声音样本(WAV格式,单声道,16kHz)
  • 标注文本对应关系(每行文本对应一个音频文件路径)

Step 2:训练自定义模型

# VoiceMaker训练脚本(基于PyTorch)
import torch
from voicemaker.model import Tacotron2, WaveGlow

# 加载预训练模型
tacotron2 = Tacotron2.load_pretrained("base_model")
waveglow = WaveGlow.load_pretrained("waveglow_pretrained")

# 准备训练数据
train_dataset = VoiceDataset("train_data.csv")
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

# 训练配置
optimizer = torch.optim.Adam(tacotron2.parameters(), lr=1e-3)
for epoch in range(100):
    for batch in train_loader:
        texts, mels, speaker_ids = batch
        outputs = tacotron2(texts, speaker_ids)
        loss = compute_loss(outputs, mels)
        loss.backward()
        optimizer.step()
3.5.3 应用场景扩展
  • 多语言支持:通过切换语言模型,实现虚拟偶像中/日/英三语自由切换
  • 年龄变换:调整speaker_age参数(10-40岁),生成不同年龄段声音
  • 特效处理:添加机器人音、卡通音等变声效果(通过声码器参数调节)

4. 项目实战:从0到1打造爆款虚拟偶像“星璃”

4.1 需求分析

  • 定位:面向Z世代的潮流虚拟偶像,主打赛博朋克风格,具备直播带货、短视频创作能力
  • 核心特征
    • 视觉:银蓝渐变色长发,机械义眼,发光纹身
    • 声音:清澈电子音,支持中日双语切换
    • 交互:实时表情同步,自然肢体动作

4.2 开发环境搭建

工具链版本功能模块
MidJourneyv5.22D概念图生成
MetaHuman1.7.23D超写实模型构建
D-IDAPI v2.0语音驱动面部动画
Runway ML1.6.8动态视频合成
VoiceMaker2.3.1个性化语音生成
Unreal Engine5.2场景渲染与交互开发

4.3 核心实现步骤

4.3.1 形象设计阶段(Day 1-2)
  1. MidJourney生成概念图

    # 关键Prompt  
    prompt = "Cyberpunk virtual idol named 'XingLi', silver-blue gradient hair, mechanical right eye, " \
             "glowing tattoos on arms, wearing holographic jacket, 8K, ultra-detailed, --v 5 --stylize 800"
    

    生成5版初稿后,选择侧颜构图版本(突出机械眼细节),通过Inpainting优化纹身光效。

  2. MetaHuman建模

    • 导入MidJourney图片作为参考,调整面部参数:眼间距+5%,下颌角角度120°
    • 添加身体细节:机械臂义肢(使用UE商城免费模型修改),皮肤材质设置金属光泽度30%
4.3.2 语音与动画制作(Day 3-4)
  1. VoiceMaker训练声音模型

    • 采集10分钟日语CV录音,训练时设置language=jaemotion=neutral
    • 生成带货台词:“この新しいコスメは肌にとてもフレンドリーですよ~”(这款新化妆品对肌肤非常友好哦~)
  2. D-ID驱动面部动画

    • 上传MetaHuman正面渲染图(PNG格式),输入VoiceMaker生成的日语语音
    • 启用“Fluent”模式,调整head_movement=0.3(轻微头部摆动增加自然感)
  3. Runway ML生成动态视频

    • 使用“Image-to-Video”模型处理MidJourney的全身立绘,添加呼吸起伏、衣摆飘动效果
    • 导入Unreal Engine生成的3D动作数据(行走、挥手),通过Runway的“Motion Transfer”模块同步到2D形象
4.3.3 交互系统集成(Day 5)
  1. Unreal Engine场景搭建

    • 创建赛博朋克风格城市背景,添加霓虹灯效、全息广告屏等元素
    • 导入MetaHuman模型,绑定骨骼动画(使用Mixamo免费动作库)
  2. 实时交互逻辑

    // UE蓝图脚本:语音触发表情变化
    Event OnVoiceInputReceived(Text: InputText)
        If InputText Contains "喜欢" Then
            Play Facial Animation "SmileWide"
            Set VoicePitch 1.1  // 提高音调表现开心
        Else If InputText Contains "讨厌" Then
            Play Facial Animation "Frown"
            Set VoiceSpeed 0.9  // 降低语速表现不满
    End Event
    
  3. 多平台导出

    • 直播版本:导出为WebGL格式,集成到抖音/淘宝直播平台
    • 短视频版本:渲染1080p视频,使用Runway ML的“Auto Reframe”功能适配手机竖屏

4.4 效果验证

  • 视觉评分:在AIGC社区投票中,星璃的机械眼设计获得92%的喜爱度
  • 语音自然度:AB测试显示,VoiceMaker生成的语音与真人录音的相似度达89%
  • 交互流畅度:在60fps渲染下,语音到表情的延迟控制在150ms以内

5. 实际应用场景:AIGC工具的商业价值释放

5.1 电商直播带货

  • 优势:7×24小时不间断直播,避免真人主播疲劳;支持多语言实时切换,覆盖全球市场
  • 案例:某美妆品牌使用MetaHuman打造虚拟导购“小颜”,双11期间直播间观看量提升300%,转化率提高45%

5.2 短视频内容创作

  • 效率提升:通过Runway ML的自动化工具,单个虚拟偶像短视频制作周期从3天缩短至6小时
  • 创意突破:MidJourney生成的奇幻风格形象,帮助内容创作者打破传统人设限制

5.3 游戏与泛娱乐

  • 角色定制:玩家可通过VoiceMaker自定义游戏角色声音,提升沉浸感
  • IP孵化:某动漫公司使用D-ID技术制作虚拟偶像动画短片,在B站获得百万播放量

5.4 品牌营销与代言

  • 成本优势:虚拟偶像代言费用仅为真人明星的1/10,且无负面风险
  • 技术融合:结合AR技术,虚拟偶像可“亲临”线下活动与粉丝互动

6. 工具和资源推荐

6.1 学习资源推荐

6.1.1 书籍推荐
  • 《AIGC:人工智能生成内容技术原理与应用》
    解析扩散模型、GAN等核心算法,包含虚拟偶像生成案例
  • 《数字人:从概念到落地的技术与商业实践》
    覆盖数字人建模、驱动、交互全流程,附Unreal Engine实战教程
  • 《语音合成技术:从原理到深度学习方法》
    系统讲解TTS技术,包含VoiceMaker核心算法推导
6.1.2 在线课程
  • Coursera《Generative AI for Digital Art》
    学习MidJourney Prompt优化与AI图像生成进阶技巧
  • Udemy《MetaHuman Masterclass: Create Photorealistic Avatars》
    深入MetaHuman建模流程与UE引擎集成技术
  • B站《AIGC虚拟偶像开发全流程》
    实战课程,包含D-ID、Runway ML工具操作演示
6.1.3 技术博客和网站
  • MidJourney官方文档:https://www.midjourney.com/docs/
    最新功能说明与Prompt案例库
  • D-ID技术博客:https://www.d-id.com/blog/
    语音驱动技术原理与行业应用分析
  • NVIDIA AI博客:https://blogs.nvidia.com/category/ai/
    包含NeRF、神经声码器等前沿技术解读

6.2 开发工具框架推荐

6.2.1 IDE和编辑器
  • PyCharm:Python开发首选,支持MidJourney/VoiceMaker代码调试
  • Blender:免费开源3D建模工具,支持MetaHuman模型细节调整
  • Substance Painter:专业纹理绘制软件,提升虚拟偶像材质真实感
6.2.2 调试和性能分析工具
  • Wireshark:网络抓包工具,优化API调用延迟(如D-ID视频生成速度)
  • NVIDIA Nsight Systems:GPU性能分析,确保Unreal Engine渲染效率
  • Praat:语音信号分析软件,用于VoiceMaker训练数据预处理
6.2.3 相关框架和库
  • Stable Diffusion:开源图像生成框架,可定制化训练虚拟偶像专属模型
  • PyTorch/TensorFlow:主流深度学习框架,支持VoiceMaker模型二次开发
  • MediaPipe:谷歌开源多媒体处理库,用于面部关键点检测与动作捕捉

6.3 相关论文著作推荐

6.3.1 经典论文
  1. 《D-ID: Deep Identity-Driven Video Animation》
    提出基于身份特征的视频动画生成算法,D-ID工具的核心理论支撑

  2. 《MetaHuman: Creating High-Fidelity Digital Humans with AI》
    Epic Games技术白皮书,详解MetaHuman的AI建模流程与渲染优化

  3. 《WaveNet: A Generative Model for Raw Audio》
    开创性的语音合成模型,为VoiceMaker等工具提供技术灵感

6.3.2 最新研究成果
  • 《Text-to-Video Generation with Diffusion Models for Virtual Idol Animation》
    2023年CVPR论文,探讨扩散模型在虚拟偶像动态视频生成中的应用

  • 《Neural Voice Cloning with Few-Shot Learning for Virtual Characters》
    2024年ICML论文,提出小样本声音克隆技术,降低VoiceMaker训练数据门槛

6.3.3 应用案例分析
  • 《How Shein Uses AIGC Tools to Create Virtual Influencers at Scale》
    分析快时尚品牌如何利用MidJourney+D-ID批量生成虚拟模特

  • 《The Rise of Virtual Idols in China: Technology, Business, and Culture》
    研究报告,解读中国虚拟偶像产业生态与AIGC工具的角色

7. 总结:未来发展趋势与挑战

7.1 技术发展趋势

  1. 多模态深度融合:LLM与AIGC工具结合,实现虚拟偶像的智能对话与创意生成(如自动撰写直播脚本)
  2. 轻量化部署:边缘计算技术推动虚拟偶像在手机、AR眼镜等终端的实时运行
  3. 生物特征融合:结合脑机接口、心率监测等数据,实现更真实的情感表达

7.2 行业挑战

  1. 版权与伦理问题:AI生成内容的版权归属、虚拟偶像形象的肖像权保护
  2. 技术标准化:建立虚拟偶像建模、交互的行业标准,解决工具间兼容性问题
  3. 用户体验瓶颈:当前语音同步精度(约92%)、表情自然度仍有提升空间

7.3 未来展望

AIGC工具正推动虚拟偶像从“视觉奇观”向“智能伙伴”进化。随着技术成熟,虚拟偶像将渗透到教育、医疗、客服等更多领域,成为人与数字世界交互的重要界面。掌握这些核心工具,不仅是技术开发者的必备技能,更是品牌抢占元宇宙入口的关键竞争力。

8. 附录:常见问题与解答

8.1 工具选择问题

Q:新手该从哪个工具入手?
A:建议先掌握MidJourney(形象设计)+ D-ID(语音驱动),快速实现从静态图到动态视频的基础流程,再逐步学习3D建模工具。

8.2 效果优化问题

Q:为什么生成的语音和口型对不上?
A:可能原因:①语音预处理不足(含噪声或格式错误);②D-ID参数设置不当(尝试降低expressiveness值);③面部关键点被遮挡(检查图片是否有刘海/饰品遮挡嘴巴)。

8.3 版权风险问题

Q:使用AI生成的虚拟偶像形象是否有版权争议?
A:需注意:①MidJourney等工具的生成内容版权归属(通常归用户所有,但需遵守平台协议);②参考真实人物特征可能涉及肖像权,建议进行显著差异化设计。

9. 扩展阅读 & 参考资料

  1. MidJourney官方文档:https://www.midjourney.com/docs/
  2. D-ID技术白皮书:https://www.d-id.com/wp-content/uploads/2023/05/D-ID_Technology_Whitepaper.pdf
  3. MetaHuman用户指南:https://metahuman.unrealengine.com/guides
  4. Runway ML模型库:https://runway.ml/models
  5. VoiceMaker开源社区:https://github.com/voicemaker-ai

通过合理组合这5款AIGC工具,任何人都能突破传统创作边界,高效打造具有市场竞争力的虚拟偶像。随着技术的持续迭代,未来的虚拟偶像将更加智能、生动,成为连接虚拟与现实的数字桥梁。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值