AIGC领域多模态大模型的对抗样本防御策略

AIGC领域多模态大模型的对抗样本防御策略

关键词:AIGC、多模态大模型、对抗样本、防御策略、模型鲁棒性、对抗训练、输入净化

摘要:本文深入探讨了AIGC(人工智能生成内容)领域多模态大模型的对抗样本防御策略。随着多模态大模型在图像生成、文本创作等领域的广泛应用,其安全性问题日益凸显。文章首先分析了多模态大模型面临的对抗攻击类型,然后系统性地介绍了当前主流的防御方法,包括对抗训练、输入净化、模型验证等技术。通过理论分析、数学建模和代码实现,详细阐述了各种防御策略的原理和实现方式。最后,文章展望了该领域未来的发展方向和面临的挑战,为研究人员和开发者提供了全面的技术参考。

1. 背景介绍

1.1 目的和范围

随着AIGC技术的快速发展,多模态大模型(如DALL·E、Stable Diffusion、GPT-4等)已经能够生成高质量的文本、图像、音频等内容。然而,这些模型在面对精心设计的对抗样本时往往表现出脆弱性。本文旨在全面分析多模态大模型面临的对抗攻击威胁,并系统性地介绍当前最有效的防御策略。

本文的研究范围涵盖:

  • 多模态大模型的对抗攻击类型分析
  • 对抗样本防御的基本原理和方法
  • 防御策略在实际应用中的实现和优化
  • 未来防御技术的发展趋势

1.2 预期读者

本文适合以下读者群体:

  1. AIGC领域的研究人员和开发者
  2. 多模态机器学习方向的专业人士
  3. 关注AI安全的技术决策者
  4. 计算机科学相关专业的高年级学生和研究生
  5. AI安全领域的从业者和爱好者

1.3 文档结构概述

本文采用从理论到实践的结构组织内容:

  1. 首先介绍背景知识和核心概念
  2. 然后深入分析对抗样本防御的技术原理
  3. 接着通过数学模型和代码实现展示具体方法
  4. 最后探讨实际应用和未来发展方向

1.4 术语表

1.4.1 核心术语定义
  • AIGC(Artificial Intelligence Generated Content): 人工智能生成内容,指利用AI技术自动生成文本、图像、音频、视频等内容的技术
  • 多模态大模型: 能够处理和生成多种类型数据(如文本、图像、音频等)的大规模神经网络模型
  • 对抗样本(Adversarial Examples): 经过特殊设计的输入数据,能够欺骗模型产生错误输出
  • 模型鲁棒性(Model Robustness): 模型在面对输入扰动或异常情况时保持性能稳定的能力
1.4.2 相关概念解释
  • 对抗训练(Adversarial Training): 通过在训练过程中引入对抗样本来提高模型鲁棒性的方法
  • 输入净化(Input Purification): 对输入数据进行预处理以消除潜在的对抗扰动
  • 梯度掩蔽(Gradient Masking): 通过修改模型结构或训练方式使攻击者难以计算有效梯度
  • 迁移攻击(Transfer Attack): 在一个模型上生成的对抗样本能够成功攻击另一个模型的现象
1.4.3 缩略词列表
缩略词全称中文解释
AIGCArtificial Intelligence Generated Content人工智能生成内容
GANGenerative Adversarial Network生成对抗网络
FGSMFast Gradient Sign Method快速梯度符号法
PGDProjected Gradient Descent投影梯度下降法
BPDABackward Pass Differentiable Approximation反向传播可微分近似

2. 核心概念与联系

多模态大模型的对抗样本防御涉及多个核心概念和技术,它们之间的关系可以通过以下示意图表示:

多模态大模型
对抗攻击
防御策略
白盒攻击
黑盒攻击
物理世界攻击
对抗训练
输入净化
模型验证
检测机制
PGD对抗训练
TRADES
随机化防御
去噪自编码器
认证防御
随机平滑

多模态大模型面临的对抗攻击主要分为三类:

  1. 白盒攻击:攻击者完全了解模型结构和参数
  2. 黑盒攻击:攻击者只能通过输入输出观察模型行为
  3. 物理世界攻击:针对现实世界部署模型的攻击

对应的防御策略可分为四大类:

  1. 对抗训练:通过在训练中引入对抗样本提高鲁棒性
  2. 输入净化:对输入数据进行预处理消除对抗扰动
  3. 模型验证:提供理论保证的防御方法
  4. 检测机制:识别并过滤对抗样本

3. 核心算法原理 & 具体操作步骤

3.1 对抗训练的基本原理

对抗训练是最有效的防御方法之一,其核心思想是将对抗样本纳入训练过程。对于多模态大模型,我们需要考虑不同模态的特性。

以图像-文本多模态模型为例,对抗训练的目标函数可以表示为:

min ⁡ θ E ( x , y ) ∼ D [ max ⁡ ∥ δ ∥ ∞ ≤ ϵ L ( f θ ( x + δ ) , y ) + λ L o r i g i n a l ( f θ ( x ) , y ) ] \min_\theta \mathbb{E}_{(x,y)\sim\mathcal{D}}[\max_{\|\delta\|_\infty\leq\epsilon}\mathcal{L}(f_\theta(x+\delta),y)+\lambda\mathcal{L}_{original}(f_\theta(x),y)] θminE(x,y)D[δϵmaxL(fθ(x+δ),y)+λLoriginal(fθ(x),y)]

其中:

  • θ \theta θ 是模型参数
  • x x x 是输入样本(如图像或文本嵌入)
  • y y y 是真实标签或目标输出
  • δ \delta δ 是对抗扰动
  • L \mathcal{L} L 是对抗损失函数
  • L o r i g i n a l \mathcal{L}_{original} Loriginal 是原始任务损失函数
  • λ \lambda λ 是平衡系数

3.2 PGD对抗训练实现

以下是使用PyTorch实现PGD对抗训练的代码示例:

import torch
import torch.nn as nn
import torch.optim as optim

def pgd_attack(model, x, y, epsilon=0.03, alpha=0.01, iterations=10):
    """
    Projected Gradient Descent (PGD)攻击实现
    :param model: 目标模型
    :param x: 输入数据
    :param y: 真实标签
    :param epsilon: 扰动最大幅度
    :param alpha: 单步攻击步长
    :param iterations: 攻击迭代次数
    :return: 对抗样本
    """
    # 初始化扰动为随机噪声
    delta = torch.zeros_like(x).uniform_(-epsilon, epsilon)
    delta.requires_grad = True
    
    for _ in range(iterations):
        loss = nn.CrossEntropyLoss()(model(x + delta), y)
        loss.backward()
        
        # 使用符号梯度更新扰动
        delta.data = (delta + alpha * delta.grad.detach().sign()).clamp(-epsilon, epsilon)
        delta.grad.zero_()
    
    return delta.detach()

def adversarial_train(model, train_loader, optimizer, epochs=10):
    """
    对抗训练主循环
    :param model: 待训练模型
    :param train_loader: 训练数据加载器
    :param optimizer: 优化器
    :param epochs: 训练轮数
    """
    model.train()
    for epoch in range(epochs):
        for x, y in train_loader:
            # 生成对抗样本
            delta = pgd_attack(model, x, y)
            
            # 对抗训练
            optimizer.zero_grad()
            loss = nn.CrossEntropyLoss()(model(x + delta), y)
            loss.backward()
            optimizer.step()

3.3 多模态对抗训练扩展

对于多模态模型,我们需要考虑不同模态的特性。以CLIP风格的模型为例,可以设计跨模态对抗训练:

def multimodal_pgd_attack(model, image, text, epsilon_img=0.03, epsilon_txt=0.1, alpha=0.01, iterations=10):
    """
    多模态PGD攻击
    :param model: 多模态模型
    :param image: 输入图像
    :param text: 输入文本(已编码)
    :param epsilon_img: 图像扰动幅度
    :param epsilon_txt: 文本扰动幅度
    :param alpha: 步长
    :param iterations: 迭代次数
    :return: 对抗图像和文本
    """
    # 图像扰动初始化
    delta_img = torch.zeros_like(image).uniform_(-epsilon_img, epsilon_img)
    delta_img.requires_grad = True
    
    # 文本扰动初始化(在嵌入空间)
    delta_txt = torch.zeros_like(text).uniform_(-epsilon_txt, epsilon_txt)
    delta_txt.requires_grad = True
    
    for _ in range(iterations):
        # 计算多模态对比损失
        image_features = model.encode_image(image + delta_img)
        text_features = model.encode_text(text + delta_txt)
        
        # 归一化特征
        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)
        
        # 计算对比损失
        logits = (image_features @ text_features.T) * model.logit_scale.exp()
        loss = nn.CrossEntropyLoss()(logits, torch.arange(len(image)))
        
        # 更新扰动
        loss.backward()
        with torch.no_grad():
            delta_img.data = (delta_img + alpha * delta_img.grad.sign()).clamp(-epsilon_img, epsilon_img)
            delta_txt.data = (delta_txt + alpha * delta_txt.grad.sign()).clamp(-epsilon_txt, epsilon_txt)
        delta_img.grad.zero_()
        delta_txt.grad.zero_()
    
    return delta_img.detach(), delta_txt.detach()

4. 数学模型和公式 & 详细讲解 & 举例说明

4.1 对抗样本的数学定义

给定一个分类模型 f θ : X → Y f_\theta: \mathcal{X} \rightarrow \mathcal{Y} fθ:XY,对抗样本 x ′ x' x 满足:

x ′ = x + δ , ∥ δ ∥ p ≤ ϵ x' = x + \delta, \quad \|\delta\|_p \leq \epsilon x=x+δ,δpϵ
f θ ( x ′ ) ≠ f θ ( x )  或  f θ ( x ′ ) = t  (目标攻击) f_\theta(x') \neq f_\theta(x) \text{ 或 } f_\theta(x') = t \text{ (目标攻击)} fθ(x)=fθ(x)  fθ(x)=t (目标攻击)

其中:

  • x x x 是原始输入
  • δ \delta δ 是对抗扰动
  • ϵ \epsilon ϵ 是扰动上限
  • p p p 指定范数类型(如 L ∞ L_\infty L, L 2 L_2 L2 等)

4.2 多模态对抗攻击的统一框架

对于多模态模型 M : X 1 × X 2 × ⋯ × X n → Y M: \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_n \rightarrow \mathcal{Y} M:X1×X2××XnY,对抗攻击可以表示为:

min ⁡ { δ i } L ( M ( x 1 + δ 1 , … , x n + δ n ) , y ) \min_{\{\delta_i\}} \mathcal{L}(M(x_1+\delta_1, \ldots, x_n+\delta_n), y) {δi}minL(M(x1+δ1,,xn+δn),y)
s.t.  ∥ δ i ∥ p i ≤ ϵ i , ∀ i \text{s.t. } \|\delta_i\|_{p_i} \leq \epsilon_i, \forall i s.t. δipiϵi,i

其中 L \mathcal{L} L 是攻击目标函数,可以根据攻击类型设计:

  • 非目标攻击: L = CE ( M ( x ′ ) , y true ) \mathcal{L} = \text{CE}(M(x'), y_{\text{true}}) L=CE(M(x),ytrue)
  • 目标攻击: L = − CE ( M ( x ′ ) , y target ) \mathcal{L} = -\text{CE}(M(x'), y_{\text{target}}) L=CE(M(x),ytarget)
  • 多模态不一致攻击: L = ∥ M i ( x ′ ) − M j ( x ′ ) ∥ \mathcal{L} = \|M_i(x') - M_j(x')\| L=Mi(x)Mj(x)

4.3 防御策略的理论保证

随机平滑是一种提供理论保证的防御方法。对于分类模型 f f f,平滑后的模型 g g g 定义为:

g ( x ) = arg ⁡ max ⁡ c ∈ Y P η ∼ N ( 0 , σ 2 I ) ( f ( x + η ) = c ) g(x) = \arg\max_{c \in \mathcal{Y}} \mathbb{P}_{\eta \sim \mathcal{N}(0, \sigma^2I)}(f(x + \eta) = c) g(x)=argcYmaxPηN(0,σ2I)(f(x+η)=c)

可以证明,平滑后的模型在 L 2 L_2 L2 范数下的鲁棒半径为:

R = σ 2 ( Φ − 1 ( p A ) − Φ − 1 ( p B ) ) R = \frac{\sigma}{2}(\Phi^{-1}(p_A) - \Phi^{-1}(p_B)) R=2σ(Φ1(pA)Φ1(pB))

其中:

  • p A p_A pA 是最可能类的概率
  • p B p_B pB 是次可能类的概率
  • Φ − 1 \Phi^{-1} Φ1 是标准正态分布的逆CDF

4.4 多模态防御的联合优化

考虑一个双模态模型 M ( x 1 , x 2 ) M(x_1, x_2) M(x1,x2),联合防御可以表示为:

min ⁡ θ E ( x 1 , x 2 , y ) [ max ⁡ ∥ δ 1 ∥ ≤ ϵ 1 , ∥ δ 2 ∥ ≤ ϵ 2 L ( M ( x 1 + δ 1 , x 2 + δ 2 ) , y ) + λ L consistency ( M ) ] \min_{\theta} \mathbb{E}_{(x_1,x_2,y)}[\max_{\|\delta_1\| \leq \epsilon_1, \|\delta_2\| \leq \epsilon_2} \mathcal{L}(M(x_1+\delta_1, x_2+\delta_2), y) + \lambda \mathcal{L}_{\text{consistency}}(M)] θminE(x1,x2,y)[δ1ϵ1,δ2ϵ2maxL(M(x1+δ1,x2+δ2),y)+λLconsistency(M)]

其中一致性损失 L consistency \mathcal{L}_{\text{consistency}} Lconsistency 确保不同模态的预测一致:

L consistency = D K L ( p 1 ∥ p 2 ) + D K L ( p 2 ∥ p 1 ) \mathcal{L}_{\text{consistency}} = D_{KL}(p_1 \| p_2) + D_{KL}(p_2 \| p_1) Lconsistency=DKL(p1p2)+DKL(p2p1)

p 1 p_1 p1 p 2 p_2 p2 分别是基于不同模态的预测分布。

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

本项目需要以下环境配置:

  1. 硬件建议:

    • GPU: NVIDIA RTX 3090或更高(24GB显存)
    • RAM: 32GB或更多
    • 存储: 1TB SSD(用于存储大型多模态数据集)
  2. 软件环境:

    conda create -n multimodal_defense python=3.9
    conda activate multimodal_defense
    pip install torch torchvision torchaudio
    pip install transformers datasets openai-clip
    pip install matplotlib seaborn tqdm
    

5.2 源代码详细实现和代码解读

我们实现一个基于CLIP的多模态对抗训练防御系统:

import clip
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from datasets import load_dataset

class MultimodalDefenseModel(nn.Module):
    def __init__(self, clip_model):
        super().__init__()
        self.clip = clip_model
        self.logit_scale = nn.Parameter(torch.ones([]) * clip_model.logit_scale)
        
    def forward(self, image, text):
        image_features = self.clip.encode_image(image)
        text_features = self.clip.encode_text(text)
        
        # 归一化特征
        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)
        
        # 计算相似度
        logit_scale = self.logit_scale.exp()
        logits = logit_scale * image_features @ text_features.T
        
        return logits

def train_multimodal_defense():
    # 加载预训练CLIP模型
    device = "cuda" if torch.cuda.is_available() else "cpu"
    clip_model, preprocess = clip.load("ViT-B/32", device=device)
    
    # 初始化防御模型
    model = MultimodalDefenseModel(clip_model).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
    
    # 加载多模态数据集(示例使用COCO)
    dataset = load_dataset("coco_captions", split="train[:5000]")
    
    def transform(examples):
        examples["image"] = [preprocess(image.convert("RGB")) for image in examples["image"]]
        examples["text"] = clip.tokenize(examples["caption"])
        return examples
    
    dataset = dataset.map(transform, batched=True)
    dataset.set_format(type="torch", columns=["image", "text"])
    loader = DataLoader(dataset, batch_size=32, shuffle=True)
    
    # 对抗训练循环
    for epoch in range(10):
        model.train()
        for batch in loader:
            images = batch["image"].to(device)
            texts = batch["text"].to(device)
            
            # 生成多模态对抗样本
            delta_img, delta_txt = multimodal_pgd_attack(
                model, images, texts, 
                epsilon_img=0.03, 
                epsilon_txt=0.1,
                alpha=0.01,
                iterations=7
            )
            
            # 对抗训练
            optimizer.zero_grad()
            logits = model(images + delta_img, texts + delta_txt)
            labels = torch.arange(len(images), device=device)
            loss = nn.CrossEntropyLoss()(logits, labels)
            loss.backward()
            optimizer.step()
        
        print(f"Epoch {epoch}, Loss: {loss.item():.4f}")

5.3 代码解读与分析

上述代码实现了以下几个关键功能:

  1. 多模态模型架构

    • 基于CLIP预训练模型构建
    • 保留图像和文本编码器
    • 可学习的logit scale参数
  2. 对抗训练流程

    • 使用PGD方法生成图像和文本的对抗样本
    • 在对抗样本上计算对比损失
    • 反向传播更新模型参数
  3. 关键参数说明

    • epsilon_img=0.03: 图像扰动的最大幅度(像素值范围[0,1])
    • epsilon_txt=0.1: 文本嵌入空间的扰动幅度
    • alpha=0.01: 每次攻击的步长
    • iterations=7: PGD攻击的迭代次数
  4. 训练策略优化

    • 使用较小的学习率(1e-5)微调预训练模型
    • 批处理大小为32,平衡内存和训练稳定性
    • 仅使用部分数据(5000样本)进行演示

6. 实际应用场景

多模态大模型的对抗防御在以下场景中具有重要应用价值:

  1. 内容审核系统

    • 防止攻击者通过对抗样本绕过AI内容过滤
    • 确保生成的文本/图像内容符合安全标准
  2. 创意辅助工具

    • 保护AI艺术生成工具不被恶意操控
    • 防止生成的创意内容被注入不良信息
  3. 多模态搜索引擎

    • 确保跨模态检索结果不受对抗干扰
    • 防止搜索结果被恶意篡改
  4. 教育应用

    • 保护教育内容生成系统不被误导
    • 确保生成的教材内容准确可靠
  5. 医疗诊断辅助

    • 防止医学影像和报告生成系统被欺骗
    • 确保多模态医疗数据的分析结果可信

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  1. 《Adversarial Machine Learning》by Yevgeniy Vorobeychik and Murat Kantarcioglu
  2. 《Interpretable Machine Learning》by Christoph Molnar (包含对抗样本章节)
  3. 《Deep Learning for Computer Vision》by Rajalingappaa Shanmugamani (包含防御实践)
7.1.2 在线课程
  1. MIT 6.S897: Adversarial Machine Learning
  2. Stanford CS330: Multi-Task and Multi-Modal Learning
  3. Coursera: AI Security and Privacy Specialization
7.1.3 技术博客和网站
  1. RobustML: 对抗机器学习社区资源
  2. OpenAI Safety Research Blog
  3. Google AI Safety and Robustness Publications

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  1. VS Code with Python/Jupyter插件
  2. PyCharm Professional (支持远程开发)
  3. JupyterLab (适合实验性研究)
7.2.2 调试和性能分析工具
  1. PyTorch Profiler
  2. Weights & Biases (实验跟踪)
  3. NVIDIA Nsight Systems (GPU分析)
7.2.3 相关框架和库
  1. CleverHans (对抗攻击库)
  2. IBM Adversarial Robustness Toolbox
  3. Microsoft Counterfit (AI安全测试框架)

7.3 相关论文著作推荐

7.3.1 经典论文
  1. “Explaining and Harnessing Adversarial Examples” (Goodfellow et al., 2014)
  2. “Towards Deep Learning Models Resistant to Adversarial Attacks” (Madry et al., 2017)
  3. “Certified Robustness to Adversarial Examples with Differential Privacy” (Lecuyer et al., 2018)
7.3.2 最新研究成果
  1. “Multimodal Contrastive Training for Visual Representation Learning” (Radford et al., 2021)
  2. “Adversarial Attacks on Multimodal Fusion Models” (Liu et al., 2022)
  3. “Defending Multimodal Models Against Adversarial Attacks” (Chen et al., 2023)
7.3.3 应用案例分析
  1. “Adversarial Examples in Modern NLP” (Jin et al., 2020)
  2. “Physical Adversarial Attacks on Deep Learning Systems” (Eykholt et al., 2018)
  3. “Adversarial Attacks on Medical Imaging” (Finlayson et al., 2019)

8. 总结:未来发展趋势与挑战

多模态大模型的对抗样本防御领域面临以下发展趋势和挑战:

  1. 防御方法的可扩展性

    • 当前防御方法在大规模模型上的计算成本过高
    • 需要开发更高效的对抗训练算法
  2. 多模态联合防御

    • 现有方法多针对单模态防御
    • 需要研究跨模态的协同防御机制
  3. 理论保证与实用性的平衡

    • 具有理论保证的方法往往过于保守
    • 需要开发既实用又有理论基础的防御
  4. 自适应攻击的防御

    • 攻击者会针对防御机制调整攻击策略
    • 需要开发更通用的防御框架
  5. 标准化评估基准

    • 缺乏统一的多模态对抗防御评估标准
    • 需要建立全面的测试基准

未来可能的研究方向包括:

  • 基于自监督学习的防御方法
  • 结合因果推理的鲁棒性增强
  • 面向多模态模型的认证防御
  • 防御方法的硬件加速实现

9. 附录:常见问题与解答

Q1: 对抗训练会降低模型的原始任务性能吗?

A1: 对抗训练通常会在原始任务性能(干净准确率)和鲁棒性之间产生权衡。通过以下方法可以缓解性能下降:

  • 使用TRADES等改进的对抗训练目标
  • 采用课程学习策略逐步增加对抗强度
  • 平衡对抗样本和干净样本的训练比例

Q2: 如何评估多模态防御方法的有效性?

A2: 多模态防御评估应考虑:

  1. 跨模态攻击成功率
  2. 单模态攻击下的模型稳定性
  3. 干净样本的性能保持度
  4. 计算效率指标
  5. 对未知攻击类型的泛化能力

Q3: 为什么多模态模型更容易受到攻击?

A3: 多模态模型面临更多攻击面:

  • 不同模态可能有不同的脆弱性
  • 模态间的交互可能引入新的攻击向量
  • 多模态融合部分往往是安全薄弱点
  • 攻击者可以通过单一模态影响整体输出

Q4: 防御方法在实际部署中的主要挑战是什么?

A4: 主要挑战包括:

  • 实时性要求与防御计算成本的矛盾
  • 防御方法对模型推理延迟的影响
  • 与现有系统的集成难度
  • 持续对抗新型攻击的维护成本

10. 扩展阅读 & 参考资料

  1. Goodfellow, I., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

  2. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

  3. Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., … & Sutskever, I. (2021). Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020.

  4. Chen, L., Tao, X., Zhang, H., & Yang, X. (2023). Defending Multimodal Fusion Models Against Adversarial Attacks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

  5. Zhang, H., Zhang, P., Hu, W., Chen, Y. C., Li, H., Dai, W., … & Wang, L. (2022). Glipv2: Unifying localization and vision-language understanding. arXiv preprint arXiv:2206.05836.

  6. Croce, F., & Hein, M. (2020). Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. arXiv preprint arXiv:2003.01690.

  7. Jia, J., Liu, Y., & Gong, N. Z. (2022). BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised Learning. IEEE Symposium on Security and Privacy.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值