AI视频生成未来展望:2025年技术发展趋势预测

AI视频生成未来展望:2025年技术发展趋势预测

关键词:AI视频生成、多模态融合、实时交互、神经辐射场(NeRF)、伦理合规、元宇宙、生成式AI

摘要:AI视频生成技术正在以“每天一个新突破”的速度重塑内容创作行业。从早期的静态图片生成到动态视频生成,从粗糙的动画到以假乱真的“数字分身”,技术迭代的背后是算法、算力和数据的三重飞跃。本文将基于当前技术进展(如扩散模型、NeRF、多模态大模型)和行业需求,系统预测2025年AI视频生成的五大核心趋势,涵盖技术突破、应用场景、伦理挑战三大维度,为内容创作者、技术从业者和企业决策者提供前瞻性参考。


背景介绍

目的和范围

随着AIGC(生成式AI)成为全球科技竞赛的核心赛道,AI视频生成作为“内容创作的最后一块高地”,其技术成熟度直接决定了元宇宙、虚拟直播、智能教育等新兴产业的落地速度。本文聚焦2025年(未来2-3年)的技术发展趋势,覆盖算法优化、应用场景扩展、伦理合规三大方向,不涉及过于遥远的科幻猜想(如完全自主的“AI电影导演”),而是基于现有技术路径的可实现性分析。

预期读者

  • 内容创作者(短视频博主、影视制片人):了解技术如何降低创作门槛,提升内容生产效率;
  • 技术从业者(AI工程师、计算机视觉研究者):掌握核心算法(如扩散模型、NeRF)的演进方向;
  • 企业决策者(广告公司、教育机构、元宇宙平台):预判行业应用场景,提前布局技术投资。

文档结构概述

本文将按照“技术原理→现状分析→趋势预测→应用场景→伦理挑战”的逻辑展开:首先用“魔法工坊”的故事类比AI视频生成的底层逻辑;接着拆解核心技术(多模态理解、NeRF、实时渲染)的原理;然后基于技术进展预测2025年的五大趋势;最后结合行业案例和伦理问题,给出实践建议。

术语表

核心术语定义
  • 多模态生成:AI同时理解文本、图像、语音、3D模型等多种类型数据,并生成视频的能力(例如:输入“海边日落+海浪声+浪漫音乐”生成对应视频)。
  • 神经辐射场(NeRF):一种通过2D图像重建3D场景的技术,可生成任意角度的“数字场景”(类似用照片“雕刻”出一个能360度旋转的虚拟世界)。
  • 实时交互视频生成:用户与AI实时对话(如“把天空换成粉色”“人物表情变开心”),AI在秒级内生成修改后的视频。
  • 生成对抗网络(GAN):由“生成器”和“判别器”组成的算法,生成器负责“造假”,判别器负责“打假”,两者对抗训练提升生成质量(类似“假画大师”和“文物鉴定专家”的博弈)。
缩略词列表
  • NeRF(Neural Radiance Fields):神经辐射场;
  • GAN(Generative Adversarial Networks):生成对抗网络;
  • Diffusion Model(扩散模型):一种通过“去噪”生成高质量内容的算法;
  • LLMs(Large Language Models):大语言模型(如GPT-4)。

核心概念与联系:AI视频生成的“魔法工坊”

故事引入:小明的“视频生成魔法”

小明是一名短视频博主,以前拍一个“草原骑马”的视频需要:① 请假去草原(路费+时间);② 租马+找摄影师(成本高);③ 天气不好重拍(风险大)。2025年,小明用AI视频生成工具:输入“夏日草原+白色骏马+穿红裙的女生”,再选一个“骑马”的动态模板,AI秒级生成4K高清视频,连马的鬃毛被风吹动的细节都清晰可见。更神奇的是,小明说“把马换成棕色”,AI立刻修改;说“女生表情更开心”,AI马上调整——这就是2025年AI视频生成的日常。

核心概念解释(像给小学生讲故事)

要理解小明的“魔法”,我们需要拆解AI视频生成的三大“魔法工具”:

1. 多模态理解:AI的“万能翻译机”
想象AI有一个“万能翻译机”,能把你说的话(文本)、画的图(图像)、哼的歌(音频)都翻译成它能懂的“数字语言”。比如你输入“海边日落,海浪拍打礁石,远处有帆船”,AI会先“听懂”这些词对应的画面(日落的颜色、海浪的形状、帆船的大小),再把它们“拼”成一个完整的场景描述。这就是多模态理解——AI同时处理多种类型数据的能力。

2. NeRF:3D场景的“雕刻师”
假设你有一叠草原的照片(不同角度拍的),AI能像“3D雕刻师”一样,用这些2D照片“刻”出一个立体的草原模型。这个模型不仅能看(比如从正面、侧面、空中看草原),还能“感受”光线变化(比如白天的草原和黄昏的草原颜色不同)。NeRF的全称是“神经辐射场”,简单说就是用神经网络把2D照片变成可任意视角观察的3D虚拟场景。

3. 实时渲染:视频的“高速打印机”
生成视频就像打印一本书,每一页是一帧画面。以前AI生成视频像“慢打印机”,生成1分钟视频要等几小时;现在的实时渲染技术像“高速打印机”,你说“改个颜色”,AI马上“打印”出新画面。这背后是算法优化(比如扩散模型的加速版)和硬件升级(比如GPU的算力提升)的双重作用。

核心概念之间的关系:三个“魔法工具”如何合作?

三个工具就像“魔法工坊”里的三个工人,分工明确但密切配合:

  • **多模态理解(翻译机)**负责“读指令”:把用户的需求(文本、图像、语音)翻译成AI能懂的“工作清单”(比如“草原+日落+海浪”);
  • **NeRF(雕刻师)**负责“建模型”:根据“工作清单”,用已有的照片或视频数据雕刻出3D场景(比如草原的立体模型);
  • **实时渲染(打印机)**负责“出成品”:把3D模型快速“打印”成视频,并且支持用户实时修改(比如调整颜色、人物动作)。

举个生活中的例子:你想做一个“生日蛋糕”视频,多模态理解相当于“读菜谱”(理解“奶油+水果+蜡烛”的需求),NeRF相当于“做蛋糕模型”(用不同角度的蛋糕照片雕刻出立体蛋糕),实时渲染相当于“快速烤蛋糕”(秒级生成最终视频)。

核心概念原理和架构的文本示意图

AI视频生成的技术架构可简化为:
输入层(多模态数据:文本/图像/语音)→ 理解层(多模态大模型:翻译用户需求)→ 建模层(NeRF/3D GAN:生成3D场景模型)→ 生成层(扩散模型/实时渲染:输出视频)→ 交互层(用户实时修改:调整画面/动作)。

Mermaid 流程图

graph TD
    A[输入:文本/图像/语音] --> B[多模态理解:翻译需求]
    B --> C[3D建模:NeRF生成场景]
    C --> D[视频生成:扩散模型渲染]
    D --> E[输出:4K高清视频]
    E --> F{用户修改?}
    F -->|是| G[实时调整:颜色/动作/场景]
    G --> D
    F -->|否| H[最终视频]

核心算法原理 & 具体操作步骤:从“生成图片”到“生成视频”的技术跃迁

从静态到动态:视频生成的算法进化史

早期AI只能生成静态图片(如GAN生成人脸),但视频需要“时间维度”的连续性(比如人物动作流畅、场景光线变化自然)。2023年后,随着扩散模型(Diffusion Model)时空建模技术的突破,AI视频生成进入爆发期。

扩散模型:用“去噪”生成高质量视频

扩散模型的核心思想是“先破坏,再重建”:

  1. 加噪阶段:把真实视频逐步添加噪声,直到变成随机噪声(就像把一张照片慢慢涂成模糊的色块);
  2. 去噪阶段:训练神经网络从噪声中“恢复”原始视频(就像“擦除”噪声,还原清晰画面)。

用Python伪代码理解扩散模型的视频生成过程:

def generate_video(prompt, num_frames=30):
    # 1. 初始化:生成随机噪声(作为视频的初始状态)
    noisy_video = torch.randn(num_frames, 3, 256, 256)  # 30帧,3通道(RGB),256x256像素
    # 2. 逐步去噪:从噪声中恢复视频
    for t in reversed(range(num_timesteps)):  # 从最后一步倒推
        # 用神经网络预测当前噪声
        predicted_noise = model(noisy_video, t, prompt)
        # 根据预测噪声更新视频(减少噪声)
        noisy_video = denoise_step(noisy_video, predicted_noise, t)
    return noisy_video  # 最终生成去噪后的视频
时空建模:让视频“动得自然”

视频与图片的最大区别是“时间维度”(帧与帧之间的关联)。为了让AI生成的视频动作流畅,需要时空注意力机制——让模型“记住”前几帧的内容,并预测下一帧的变化。例如,生成“人物跑步”视频时,模型需要知道“上一帧人物的腿在左边,下一帧应该在右边”。

数学上,时空注意力的计算可表示为:
Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V
其中, Q Q Q(查询)、 K K K(键)、 V V V(值)不仅包含空间信息(画面中的像素位置),还包含时间信息(前几帧的内容)。


数学模型和公式 & 详细讲解 & 举例说明

神经辐射场(NeRF)的数学本质:用函数描述3D场景

NeRF的核心是用一个神经网络 F θ F_\theta Fθ 表示3D场景的“颜色”和“密度”:
F θ ( x , d ) = ( c , σ ) F_\theta(\mathbf{x}, \mathbf{d}) = (c, \sigma) Fθ(x,d)=(c,σ)
其中:

  • x \mathbf{x} x 是3D空间中的点坐标(如草原上某棵草的位置);
  • d \mathbf{d} d 是观察方向(如从正面看还是侧面看);
  • c c c 是该点的颜色(如草的绿色);
  • σ \sigma σ 是该点的密度(如草的“厚实程度”,影响光线是否穿透)。

通过输入多个角度的2D照片,NeRF训练这个函数 F θ F_\theta Fθ,使其能“推断”出任意视角下的场景颜色和密度,从而生成360度可旋转的虚拟场景。

举例:用100张不同角度拍摄的“草原”照片训练NeRF模型后,输入一个新的视角(比如“从5米高空俯视草原”),模型会计算该视角下每个空间点的颜色和密度,最终渲染出一张从未拍摄过的“高空草原”照片。

生成对抗网络(GAN)的损失函数:“造假”与“打假”的平衡

GAN由生成器(Generator,G)和判别器(Discriminator,D)组成,两者的目标函数分别为:
min ⁡ G max ⁡ D E x ∼ p data ( x ) [ log ⁡ D ( x ) ] + E z ∼ p z ( z ) [ log ⁡ ( 1 − D ( G ( z ) ) ) ] \min_G \max_D \mathbb{E}_{\mathbf{x}\sim p_{\text{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z}\sim p_{\text{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))] GminDmaxExpdata(x)[logD(x)]+Ezpz(z)[log(1D(G(z)))]
简单说:

  • 生成器G的目标是让D“认错”(即D判断G生成的假视频为真);
  • 判别器D的目标是区分真假视频(即正确判断真视频为真,假视频为假)。

举例:生成器生成一段“虚拟人说话”的视频,判别器需要判断“这是真人还是AI生成的”。通过反复对抗训练,生成器的“造假”能力越来越强,最终生成以假乱真的视频。


项目实战:用Stable Video Diffusion生成动态视频

开发环境搭建

2023年底,Stability AI发布了Stable Video Diffusion(SVD),这是首个开源的高性能视频生成模型。我们可以用它快速生成动态视频。
环境要求

  • 硬件:NVIDIA GPU(推荐RTX 3090/4090,显存≥24GB);
  • 软件:Python 3.8+,PyTorch 2.0+,diffusers库(pip install diffusers transformers accelerate)。

源代码详细实现和代码解读

以下是用SVD生成视频的Python代码示例(注释解释关键步骤):

from diffusers import StableVideoDiffusionPipeline
import torch

# 1. 加载模型(使用预训练的SVD模型)
pipe = StableVideoDiffusionPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid",
    torch_dtype=torch.float16  # 使用半精度浮点加速计算
)
pipe = pipe.to("cuda")  # 模型加载到GPU

# 2. 准备输入:一张“初始图片”(作为视频的第一帧)
from PIL import Image
input_image = Image.open("input_image.jpg").convert("RGB")
input_image = input_image.resize((576, 320))  # 调整尺寸为模型支持的分辨率

# 3. 生成视频(设置参数:生成8帧,帧率7.5fps)
generator = torch.manual_seed(42)  # 固定随机种子,保证结果可复现
video_frames = pipe(
    input_image,
    num_frames=8,  # 生成8帧(约1秒视频)
    frame_strength=0.8,  # 控制视频与输入图片的相似程度(0.8表示保留较多原图细节)
    generator=generator
).frames

# 4. 保存视频为GIF(方便查看)
video_frames[0].save(
    "output_video.gif",
    save_all=True,
    append_images=video_frames[1:],
    duration=100,  # 每帧持续100ms(10fps)
    loop=0
)

代码解读与分析

  • 模型加载StableVideoDiffusionPipeline 是SVD的官方工具类,支持从预训练权重初始化模型;
  • 输入图片:SVD采用“图生视频”(Image-to-Video)模式,需要一张初始图片作为视频的第一帧;
  • 关键参数num_frames 控制生成的帧数,frame_strength 越大,视频越接近输入图片(适合生成“轻微动态”的视频,如风吹树叶);越小则动态变化越大(适合生成“剧烈动作”的视频,如人物跑步);
  • 输出保存:生成的video_frames是PIL.Image列表,可保存为GIF或MP4(需额外处理)。

实际应用场景:2025年,AI视频生成将“无孔不入”

1. 影视制作:从“辅助工具”到“创作主力”

  • 虚拟场景生成:用NeRF技术快速生成电影中的“外星世界”“古代城市”,替代传统绿幕拍摄(节省场地和时间成本);
  • 数字演员:通过“动作迁移”技术,将真人演员的动作“复制”到虚拟角色上(如让已去世的演员“复活”参演新电影);
  • 实时预览:导演说“把火山颜色改成红色”,AI秒级生成修改后的画面,无需重拍。

2. 教育行业:动态知识“活起来”

  • 3D教学视频:生成“地球自转”“细胞分裂”等动态过程,比静态图片更直观;
  • 个性化课程:根据学生提问生成定制视频(如“解释为什么天空是蓝色的”,AI生成包含光线散射原理的动画);
  • 虚拟教师:用AI生成“数字教师”,支持多语言、多风格(如严肃的数学老师、活泼的英语老师)。

3. 广告营销:“千人千面”的动态广告

  • 实时定制:用户浏览某品牌运动鞋时,AI根据用户性别、偏好生成“你穿这双鞋跑步”的视频(背景是用户所在城市的街道);
  • 虚拟代言人:品牌无需签约真人明星,用AI生成“虚拟代言人”,支持24小时“代言”不同国家的广告(切换语言和肤色);
  • 成本降低:传统广告拍摄需3天+10万元,AI生成仅需10分钟+100元。

4. 元宇宙与虚拟社交:“面对面”的沉浸式体验

  • 虚拟直播:用户用手机拍一张照片,AI生成3D虚拟形象,在元宇宙中“直播”(动作、表情与真人同步);
  • 历史重现:用户选择“回到唐朝”,AI生成长安城的街景视频,用户可与“虚拟古人”互动(如买糖葫芦、听评书);
  • 远程协作:跨国团队开会时,AI将文字会议纪要自动生成“动画视频”,帮助成员快速理解重点。

工具和资源推荐

开源工具

  • Stable Video Diffusion(SVD):Stability AI开源的图生视频模型,支持快速生成动态视频(GitHub链接);
  • NeRF系列库:包括Instant NeRF(实时渲染)、Video NeRF(视频场景重建),适合3D场景生成(项目官网);
  • Diffusers库:Hugging Face的开源扩散模型工具包,支持快速调用SVD、Stable Diffusion等模型(文档)。

商业工具

  • Runway:一站式AI视频生成平台,支持文本生成视频、视频修复、风格迁移(适合无代码用户);
  • Synthesia:专注“数字人视频生成”,支持输入文本生成虚拟人讲解视频(适合教育、企业培训);
  • Adobe Firefly:Adobe推出的AI创作套件,集成视频生成、图片编辑等功能(适合专业设计师)。

数据集推荐

  • Kinetics-700:包含700个动作类别的视频数据集(如跑步、做饭),适合训练动作生成模型;
  • UCF-101:101个动作类别的短视频数据集(如篮球扣篮、瑜伽),适合小样本学习;
  • Google AI Video Database:包含3D场景、多模态数据的大型视频数据集(需申请访问)。

未来发展趋势与挑战:2025年的“三大突破”与“三大风险”

趋势一:多模态大模型驱动“任意输入→视频输出”

2025年,AI视频生成将与LLMs(大语言模型)深度融合,实现“任意输入”生成视频:

  • 文本输入:输入一段小说描述,AI生成对应的影视级视频;
  • 语音输入:用户口述“我想要一个生日惊喜的视频”,AI自动提取关键词(生日蛋糕、朋友、惊喜表情)生成视频;
  • 多模态混合输入:上传一张童年照片+一段妈妈的语音(“宝贝生日快乐”),AI生成“童年的你和妈妈一起过生日”的温馨视频。

趋势二:实时交互成为标配,“视频版PS”普及

2025年,AI视频生成工具将像PS一样支持“实时修改”:

  • 逐帧编辑:点击视频中的某个人物,调整其表情、服装、动作;
  • 场景替换:把视频背景从“办公室”换成“海边”,同时自动调整光线(如海边的阳光更明亮);
  • 多版本生成:用户说“生成3个不同风格的结尾”,AI秒级输出“悲伤版”“搞笑版”“温馨版”。

趋势三:3D化与全真感突破,“元宇宙原生视频”爆发

随着NeRF和3D GAN的进步,2025年AI生成的视频将具备“全真感”:

  • 360度可交互:用户可拖动视频自由旋转视角(如查看虚拟房间的每个角落);
  • 物理真实:视频中的物体符合物理规律(如球掉在地上会弹起,水倒在杯子里会流动);
  • 跨设备兼容:生成的视频可直接导入元宇宙平台(如Decentraland),作为虚拟场景的一部分。

挑战一:伦理风险——深度伪造与版权纠纷

  • 深度伪造滥用:恶意用户可能用AI生成“名人说假话”的视频(如政客“承认犯罪”),需发展“视频鉴真”技术(如生成时嵌入“数字水印”);
  • 版权界定模糊:AI生成视频可能“借鉴”大量未授权的素材(如他人的照片、视频片段),需建立“数据来源追溯”机制;
  • 就业冲击:低技能视频创作者(如简单特效制作、基础剪辑)可能被AI替代,需推动“人机协作”模式(如AI负责重复工作,人类负责创意)。

挑战二:技术瓶颈——长视频连贯性与计算成本

  • 长视频生成:当前AI擅长生成5秒内的短视频,但30秒以上的长视频易出现“逻辑断裂”(如人物突然消失),需优化“长期时空建模”算法;
  • 计算成本:生成4K 30秒视频需消耗大量GPU算力(目前成本约50-100美元),需通过模型压缩(如蒸馏技术)和硬件优化(如专用AI芯片)降低成本。

挑战三:行业标准缺失——质量评估与安全规范

  • 质量评估:如何定义“高质量视频”?需建立客观指标(如清晰度、流畅度、内容相关性)和主观评价(用户调研)的混合标准;
  • 安全规范:需明确AI视频生成的“红线”(如禁止生成暴力、恐怖内容),并通过技术手段(如内容过滤模型)实现自动审核。

总结:学到了什么?

核心概念回顾

  • 多模态理解:AI同时处理文本、图像、语音的能力,是“听懂用户需求”的关键;
  • NeRF:用2D照片生成3D场景的技术,让视频具备“任意视角观察”的全真感;
  • 实时渲染:秒级生成/修改视频的技术,依赖算法优化和硬件升级。

概念关系回顾

多模态理解是“输入翻译官”,NeRF是“3D建模师”,实时渲染是“高速打印机”,三者协作实现“用户需求→高质量视频”的全流程生成。2025年,这三大技术的进一步融合将推动AI视频生成从“可用”走向“好用”,渗透到影视、教育、广告、元宇宙等多个领域。


思考题:动动小脑筋

  1. 如果你是一名短视频博主,2025年AI视频生成技术可能如何改变你的创作流程?你会优先用它解决哪些痛点(如成本、时间、创意限制)?
  2. 假设你需要设计一个“视频鉴真”工具(检测视频是否由AI生成),你会从哪些技术特征入手(如像素噪声、动作流畅度、光线一致性)?
  3. AI生成视频可能涉及版权问题,如果你是政策制定者,会如何设计“AI生成内容的版权归属规则”(如用户、模型训练者、数据提供者如何分配权益)?

附录:常见问题与解答

Q1:AI生成的视频能完全替代真人拍摄吗?
A:短期内不会。AI擅长生成“虚拟场景”和“重复动作”(如产品展示、教学动画),但真人拍摄的“情感表达”(如演员的微表情)、“真实场景”(如自然灾害现场)仍不可替代。未来更可能是“人机协作”模式(AI负责前期建模,真人负责关键镜头)。

Q2:AI生成视频的“真实感”能达到什么程度?
A:2025年,AI生成的“数字人”视频可能达到“以假乱真”的水平(普通人难辨真假),但专业人士(如影视灯光师)仍能通过“光线不自然”“动作机械感”等细节识别。随着NeRF和物理模拟技术的进步,长期可能实现“完全真实”。

Q3:如何避免AI生成视频被用于诈骗?
A:需“技术+法律”双管齐下:技术上,为AI生成视频添加“数字水印”(肉眼不可见,但检测工具可识别);法律上,明确“伪造视频用于诈骗”的刑事责任,提高违法成本。


扩展阅读 & 参考资料

  • 论文:《High-Resolution Video Synthesis with Diffusion Models》(SVD模型原理论文,链接);
  • 报告:《AIGC产业发展白皮书(2023)》(中国信息通信研究院,分析AI视频生成的行业应用);
  • 博客:《NeRF:从0到1理解神经辐射场》(知乎@李沐,用通俗语言讲解NeRF原理);
  • 工具文档:《Stable Video Diffusion官方指南》(Hugging Face,包含模型参数调优技巧)。
### 生成模型当前发展状况 生成模型作为人工智能领域的重要分支,在过去几中经历了快速的技术进步和发展。其发展历程可以从多个阶段来理解,包括机器学习、深度学习和生成式人工智能阶段[^2]。 目前,生成模型的核心技术主要集中在以下几个方面: 1. **生成对抗网络 (GAN)** GAN 是生成模型中的重要组成部分之一,它通过竞争机制训练生成器和判别器,从而实现高质量的数据生成。例如,DCGAN 使用卷积神经网络生成逼真的图像,而 CycleGAN 可以完成跨域风格迁移的任务,如将马转化为斑马或夏季风景转化为冬季风景[^4]。 2. **变分自编码器 (VAE)** VAE 结合概率统计理论与深度学习框架,能够在潜在空间上进行连续采样并生成多样化的样本。尽管相比 GAN 的生成质量稍逊一筹,但在某些特定应用场景下具有独特优势。 3. **扩散模型 (Diffusion Models)** 扩散模型是一种新型的生成模型架构,通过对噪声逐步去噪的过程重建清晰的目标数据。这类模型因其出色的性能而在图像合成任务中崭露头角,并被认为是未来可能取代传统 GAN 架构的一种方向。 ### 预测2025的新兴趋势 展望2025,生成模型预计将在以下几方面展现新趋势和技术革新: 1. **多模态融合** 多模态生成模型将成为主流发展方向之一,旨在联合处理文本、图像、音频等多种形式的信息。这种综合能力将进一步提升用户体验,比如更真实的虚拟角色创建或者更加沉浸式的交互环境设计。 2. **高效计算与绿色AI** 随着对环境保护意识增强以及硬件成本考量增加,如何降低大型预训练模型能耗成为亟待解决的问题。因此,轻量化版本的大规模生成模型将会被开发出来满足不同设备端部署需求的同时减少碳足迹影响。 3. **可解释性和公平性改进** 提升生成系统的透明度及其决策过程将是另一个重点研究课题;同时也要注意消除偏见确保输出内容公正无歧视现象发生。 4. **强化学习驱动下的自动化调优** 借助于强化学习方法论指导超参搜索路径规划等工作流程环节,则有助于进一步简化人工干预程度进而提高整体效率水平[^1]。 ```python import tensorflow as tf from tensorflow.keras import layers, models def build_generator(): model = models.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) # Add more convolutional transpose layers here... return model ``` 上述代码片段展示了一个简单的生成器构建例子,适用于基础版 DCGAN 实现方案。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值