大数据领域 Hadoop 数据存储优化的策略
关键词:大数据、Hadoop、数据存储优化、HDFS、MapReduce
摘要:本文聚焦于大数据领域中 Hadoop 数据存储优化的策略。首先介绍了 Hadoop 数据存储优化的背景和重要性,包括其目的、预期读者、文档结构和相关术语。接着阐述了 Hadoop 数据存储的核心概念,如 HDFS 架构和 MapReduce 原理,并通过 Mermaid 流程图展示其工作流程。详细讲解了核心算法原理及操作步骤,结合 Python 代码示例。探讨了相关数学模型和公式,并举例说明。通过项目实战展示代码实现和解读。分析了 Hadoop 数据存储优化策略在不同场景下的实际应用。推荐了学习资源、开发工具框架和相关论文著作。最后总结了未来发展趋势与挑战,还包含常见问题解答和扩展阅读参考资料,旨在为大数据从业者提供全面且深入的 Hadoop 数据存储优化知识。
1. 背景介绍
1.1 目的和范围
在大数据时代,数据量呈现爆炸式增长,如何高效地存储和管理这些数据成为了企业和研究机构面临的重要挑战。Hadoop 作为一个开源的分布式计算平台,提供了可靠、可扩展的数据存储和处理能力。然而,随着数据规模的不断扩大,Hadoop 数据存储面临着性能瓶颈、空间浪费等问题。因此,对 Hadoop 数据存储进行优化具有重要的现实意义。
本文的目的是深入探讨 Hadoop 数据存储优化的策略,涵盖 Hadoop 分布式文件系统(HDFS)和相关的数据处理组件,如 MapReduce。通过分析 Hadoop 数据存储的特点和面临的问题,提出一系列有效的优化策略,并结合实际案例进行详细说明。
1.2 预期读者
本文预期读者包括大数据领域的开发者、数据分析师、系统管理员以及对 Hadoop 技术感兴趣的研究人员。无论是初学者还是有一定经验的专业人士,都可以从本文中获取关于 Hadoop 数据存储优化的有价值信息。
1.3 文档结构概述
本文将按照以下结构进行组织:
- 核心概念与联系:介绍 Hadoop 数据存储的核心概念,包括 HDFS 的架构和 MapReduce 的工作原理,并通过 Mermaid 流程图展示其工作流程。
- 核心算法原理 & 具体操作步骤:详细讲解 Hadoop 数据存储相关的核心算法原理,如数据块分配算法,并给出具体的操作步骤,结合 Python 代码示例。
- 数学模型和公式 & 详细讲解 & 举例说明:探讨 Hadoop 数据存储中的数学模型和公式,如数据副本放置策略的数学模型,并通过具体例子进行详细说明。
- 项目实战:代码实际案例和详细解释说明:通过一个实际的项目案例,展示如何在实际应用中实现 Hadoop 数据存储优化,包括开发环境搭建、源代码实现和代码解读。
- 实际应用场景:分析 Hadoop 数据存储优化策略在不同实际场景中的应用,如电商大数据分析、日志数据处理等。
- 工具和资源推荐:推荐一些学习 Hadoop 数据存储优化的资源,包括书籍、在线课程、技术博客和网站,以及开发工具框架和相关论文著作。
- 总结:未来发展趋势与挑战:总结 Hadoop 数据存储优化的发展趋势和面临的挑战。
- 附录:常见问题与解答:解答一些关于 Hadoop 数据存储优化的常见问题。
- 扩展阅读 & 参考资料:提供一些扩展阅读的资料和参考文献。
1.4 术语表
1.4.1 核心术语定义
- Hadoop:一个开源的分布式计算平台,主要由 HDFS(Hadoop Distributed File System)和 MapReduce 组成,用于存储和处理大规模数据。
- HDFS:Hadoop 分布式文件系统,是 Hadoop 的核心组件之一,用于在集群中存储大规模数据。
- MapReduce:一种分布式计算模型,用于处理大规模数据集,包括 Map 阶段和 Reduce 阶段。
- 数据块(Block):HDFS 中数据存储的基本单位,默认大小为 128MB。
- 数据副本(Replication):为了保证数据的可靠性,HDFS 会将每个数据块复制多份存储在不同的节点上。
- NameNode:HDFS 的主节点,负责管理文件系统的命名空间和客户端对文件的访问。
- DataNode:HDFS 的从节点,负责存储实际的数据块。
1.4.2 相关概念解释
- 分布式计算:将一个大的计算任务分解成多个小的子任务,分配到多个计算节点上并行执行,最后将结果汇总。
- 分布式文件系统:将文件分散存储在多个节点上,通过网络实现对文件的统一管理和访问。
- 数据冗余:为了提高数据的可靠性和可用性,将数据复制多份存储在不同的位置。
1.4.3 缩略词列表
- HDFS:Hadoop Distributed File System
- MR:MapReduce
2. 核心概念与联系
2.1 HDFS 架构
HDFS 是一个分布式文件系统,其架构主要由 NameNode 和 DataNode 组成。NameNode 是 HDFS 的主节点,负责管理文件系统的命名空间和客户端对文件的访问。DataNode 是 HDFS 的从节点,负责存储实际的数据块。
客户端通过与 NameNode 交互来获取文件的元数据信息,如文件的位置、数据块的分布等。然后,客户端直接与 DataNode 进行数据的读写操作。
下面是 HDFS 架构的 Mermaid 流程图:
2.2 MapReduce 原理
MapReduce 是一种分布式计算模型,主要由 Map 阶段和 Reduce 阶段组成。Map 阶段将输入数据进行分割和映射,生成中间键值对。Reduce 阶段将中间键值对进行合并和聚合,生成最终的结果。
MapReduce 的工作流程如下:
- 输入数据分割:将输入数据分割成多个小块,每个小块由一个 Map 任务处理。
- Map 阶段:每个 Map 任务对输入数据进行处理,生成中间键值对。
- Shuffle 阶段:将中间键值对按照键进行排序和分组,将相同键的值发送到同一个 Reduce 任务。
- Reduce 阶段:每个 Reduce 任务对分组后的键值对进行处理,生成最终的结果。
下面是 MapReduce 工作流程的 Mermaid 流程图:
2.3 HDFS 与 MapReduce 的联系
HDFS 为 MapReduce 提供了数据存储的基础,MapReduce 则利用 HDFS 存储的数据进行分布式计算。MapReduce 任务在执行过程中,从 HDFS 读取输入数据,将计算结果写回到 HDFS 中。
3. 核心算法原理 & 具体操作步骤
3.1 数据块分配算法
HDFS 中的数据块分配算法主要考虑数据的可靠性、可用性和负载均衡。默认情况下,HDFS 会将每个数据块复制三份,其中一份存储在本地节点,另外两份分别存储在不同机架的节点上。
以下是一个简单的 Python 代码示例,模拟数据块分配算法:
import random
# 节点列表
nodes = ['node1', 'node2', 'node3', 'node4', 'node5']
# 机架信息
racks = {
'node1': 'rack1',
'node2': 'rack1',
'node3': 'rack2',
'node4': 'rack2',
'node5': 'rack3'
}
def allocate_blocks(file_size, block_size=128 * 1024 * 1024):
num_blocks = file_size // block_size
if file_size % block_size != 0:
num_blocks += 1
block_allocation = []
for i in range(num_blocks):
# 选择本地节点
local_node = random.choice(nodes)
# 选择不同机架的节点
rack = racks[local_node]
other_racks = [r for r in set(racks.values()) if r != rack]
other_rack = random.choice(other_racks)
other_nodes = [n for n, r in racks.items() if r == other_rack]
other_node1 = random.choice(other_nodes)
# 再选择一个不同的节点
remaining_nodes = [n for n in nodes if n not in [local_node, other_node1]]
other_node2 = random.choice(remaining_nodes)
block_allocation.append((local_node, other_node1, other_node2))
return block_allocation
# 示例:文件大小为 500MB
file_size = 500 * 1024 * 1024
allocation = allocate_blocks(file_size)
for i, (node1, node2, node3) in enumerate(allocation):
print(f"Block {i}: {node1}, {node2}, {node3}")
3.2 数据副本放置策略
数据副本放置策略对 HDFS 的性能和可靠性有重要影响。除了默认的三副本策略外,还可以根据实际情况调整副本数量和放置位置。
以下是一个简单的 Python 代码示例,模拟数据副本放置策略:
def place_replicas(block, nodes, racks, replication_factor=3):
local_node = random.choice(nodes)
rack = racks[local_node]
other_racks = [r for r in set(racks.values()) if r != rack]
other_rack = random.choice(other_racks)
other_nodes = [n for n, r in racks.items() if r == other_rack]
other_node1 = random.choice(other_nodes)
remaining_nodes = [n for n in nodes if n not in [local_node, other_node1]]
other_node2 = random.choice(remaining_nodes)
replicas = [local_node, other_node1, other_node2]
if replication_factor > 3:
for i in range(replication_factor - 3):
node = random.choice(remaining_nodes)
replicas.append(node)
return replicas
# 示例:一个数据块
block = 'block1'
replicas = place_replicas(block, nodes, racks)
print(f"Replicas for {block}: {replicas}")
3.3 具体操作步骤
3.3.1 配置 HDFS
在 Hadoop 集群中,需要对 HDFS 进行配置,包括数据块大小、副本数量等参数。可以通过修改 hdfs-site.xml 文件来进行配置。
<configuration>
<property>
<name>dfs.blocksize</name>
<value>134217728</value> <!-- 128MB -->
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
</configuration>
3.3.2 上传数据到 HDFS
使用 hdfs dfs -put 命令将本地数据上传到 HDFS 中。
hdfs dfs -put /local/path/to/file /hdfs/path/to/destination
3.3.3 运行 MapReduce 任务
使用 hadoop jar 命令运行 MapReduce 任务。
hadoop jar /path/to/your/mapreduce.jar com.yourcompany.YourMapperReducer /input /output
4. 数学模型和公式 & 详细讲解 & 举例说明
4.1 数据副本放置的数学模型
数据副本放置的目标是在保证数据可靠性的前提下,尽量提高数据的可用性和负载均衡。可以使用以下数学模型来描述数据副本放置问题:
设 NNN 为节点集合,RRR 为机架集合,rir_{i}ri 表示节点 iii 所在的机架,dijd_{ij}dij 表示节点 iii 和节点 jjj 之间的距离(可以根据网络延迟等因素定义),xijx_{ij}xij 为二进制变量,当数据副本放置在节点 jjj 上时,xij=1x_{ij}=1xij=1,否则 xij=0x_{ij}=0xij=0,fff 为副本数量。
目标函数:
min∑i∈N∑j∈Ndijxij
\min \sum_{i \in N} \sum_{j \in N} d_{ij} x_{ij}
mini∈N∑j∈N∑dijxij
约束条件:
∑j∈Nxij=f,∀i∈N
\sum_{j \in N} x_{ij} = f, \forall i \in N
j∈N∑xij=f,∀i∈N
xij∈{0,1},∀i,j∈N
x_{ij} \in \{0, 1\}, \forall i, j \in N
xij∈{0,1},∀i,j∈N
4.2 数据块分配的数学模型
数据块分配的目标是在保证数据可靠性的前提下,尽量提高数据的存储效率和负载均衡。可以使用以下数学模型来描述数据块分配问题:
设 BBB 为数据块集合,NNN 为节点集合,cic_{i}ci 表示节点 iii 的剩余存储空间,sbs_{b}sb 表示数据块 bbb 的大小,ybiy_{bi}ybi 为二进制变量,当数据块 bbb 分配到节点 iii 上时,ybi=1y_{bi}=1ybi=1,否则 ybi=0y_{bi}=0ybi=0。
目标函数:
min∑b∈B∑i∈Nciybi
\min \sum_{b \in B} \sum_{i \in N} c_{i} y_{bi}
minb∈B∑i∈N∑ciybi
约束条件:
∑i∈Nybi=1,∀b∈B
\sum_{i \in N} y_{bi} = 1, \forall b \in B
i∈N∑ybi=1,∀b∈B
∑b∈Bsbybi≤ci,∀i∈N
\sum_{b \in B} s_{b} y_{bi} \leq c_{i}, \forall i \in N
b∈B∑sbybi≤ci,∀i∈N
ybi∈{0,1},∀b∈B,i∈N
y_{bi} \in \{0, 1\}, \forall b \in B, i \in N
ybi∈{0,1},∀b∈B,i∈N
4.3 举例说明
假设我们有一个 Hadoop 集群,包含 5 个节点 ['node1', 'node2', 'node3', 'node4', 'node5'],分布在 3 个机架 ['rack1', 'rack2', 'rack3'] 上。有一个文件大小为 500MB,数据块大小为 128MB,副本数量为 3。
根据数据块分配算法,该文件将被分割成 4 个数据块。每个数据块将被复制 3 份,分别存储在不同的节点上。通过上述数学模型和算法,可以计算出最优的数据块分配和副本放置方案,以提高数据的可靠性和可用性。
5. 项目实战:代码实际案例和详细解释说明
5.1 开发环境搭建
5.1.1 安装 Hadoop
首先,需要在服务器上安装 Hadoop。可以从 Hadoop 官方网站下载最新版本的 Hadoop,并按照官方文档进行安装和配置。
5.1.2 配置 Hadoop 集群
配置 Hadoop 集群,包括 core-site.xml、hdfs-site.xml、mapred-site.xml 和 yarn-site.xml 等文件。以下是一个简单的配置示例:
core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
hdfs-site.xml
<configuration>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/data/hadoop/namenode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/data/hadoop/datanode</value>
</property>
</configuration>
5.1.3 启动 Hadoop 集群
启动 Hadoop 集群,包括 NameNode、DataNode、ResourceManager 和 NodeManager 等服务。
start-dfs.sh
start-yarn.sh
5.2 源代码详细实现和代码解读
5.2.1 编写 MapReduce 程序
以下是一个简单的 MapReduce 程序,用于统计文本文件中每个单词的出现次数:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
5.2.2 代码解读
- Mapper 类:
TokenizerMapper类继承自Mapper类,负责将输入的文本行分割成单词,并为每个单词输出一个键值对<单词, 1>。 - Reducer 类:
IntSumReducer类继承自Reducer类,负责将相同单词的计数进行累加,输出最终的单词计数结果。 - 主类:
WordCount类的main方法负责配置和启动 MapReduce 任务,设置输入输出路径等参数。
5.3 代码解读与分析
5.3.1 Map 阶段
在 Map 阶段,TokenizerMapper 类将输入的文本行分割成单词,并为每个单词输出一个键值对 <单词, 1>。这个过程是并行执行的,每个 Map 任务处理一部分输入数据。
5.3.2 Shuffle 阶段
在 Shuffle 阶段,Hadoop 框架将 Map 阶段输出的中间键值对按照键进行排序和分组,将相同键的值发送到同一个 Reduce 任务。
5.3.3 Reduce 阶段
在 Reduce 阶段,IntSumReducer 类将相同单词的计数进行累加,输出最终的单词计数结果。
5.3.4 性能优化
为了提高性能,可以在 Map 阶段使用 Combiner 进行局部聚合,减少 Shuffle 阶段的数据传输量。在上述代码中,job.setCombinerClass(IntSumReducer.class) 语句设置了 Combiner 类。
6. 实际应用场景
6.1 电商大数据分析
在电商领域,每天会产生大量的交易数据、用户行为数据等。使用 Hadoop 进行数据存储和分析可以帮助电商企业了解用户需求、优化商品推荐、提高营销效果等。
例如,通过对用户的购买记录和浏览历史进行分析,可以为用户推荐个性化的商品。可以使用 Hadoop 的 MapReduce 框架对海量的交易数据进行处理,统计每个用户的购买偏好和商品的热门程度。
6.2 日志数据处理
在互联网企业中,服务器会产生大量的日志数据,如访问日志、错误日志等。使用 Hadoop 进行日志数据存储和分析可以帮助企业发现系统故障、优化网站性能、进行安全审计等。
例如,通过对服务器访问日志进行分析,可以了解用户的访问行为和流量分布,发现潜在的安全威胁。可以使用 Hadoop 的 HDFS 存储海量的日志数据,使用 MapReduce 框架对日志数据进行处理和分析。
6.3 金融风险评估
在金融领域,需要对大量的客户数据、交易数据进行分析,以评估金融风险。使用 Hadoop 进行数据存储和分析可以帮助金融机构提高风险评估的准确性和效率。
例如,通过对客户的信用记录、交易历史等数据进行分析,可以预测客户的违约风险。可以使用 Hadoop 的 HDFS 存储海量的金融数据,使用 MapReduce 框架对数据进行处理和建模。
7. 工具和资源推荐
7.1 学习资源推荐
7.1.1 书籍推荐
- 《Hadoop 实战》:详细介绍了 Hadoop 的原理、架构和应用,适合初学者入门。
- 《大数据技术原理与应用》:全面介绍了大数据领域的相关技术,包括 Hadoop、Spark 等。
- 《Hadoop 分布式计算实战》:通过实际案例介绍了 Hadoop 的应用,帮助读者掌握 Hadoop 的实际开发技能。
7.1.2 在线课程
- Coursera 上的 “Big Data Specialization”:由多所知名大学的教授授课,系统介绍了大数据领域的相关知识。
- edX 上的 “Introduction to Big Data with Apache Spark”:介绍了 Apache Spark 的原理和应用,与 Hadoop 有一定的关联。
- 中国大学 MOOC 上的 “大数据技术原理与应用”:国内高校开设的大数据课程,内容丰富。
7.1.3 技术博客和网站
- Apache Hadoop 官方网站:提供了 Hadoop 的最新版本和详细的文档。
- 开源中国:有很多关于 Hadoop 的技术文章和案例分享。
- 博客园:有很多大数据领域的技术博客,其中不乏关于 Hadoop 的优秀文章。
7.2 开发工具框架推荐
7.2.1 IDE 和编辑器
- Eclipse:一个功能强大的 Java 开发 IDE,支持 Hadoop 开发。
- IntelliJ IDEA:另一个流行的 Java 开发 IDE,对 Hadoop 开发也有很好的支持。
- Visual Studio Code:轻量级的代码编辑器,支持多种编程语言,可用于 Hadoop 脚本开发。
7.2.2 调试和性能分析工具
- Hadoop 自带的 Web UI:可以查看 Hadoop 集群的状态和任务执行情况。
- Ganglia:用于监控 Hadoop 集群的性能指标,如 CPU 使用率、内存使用率等。
- Nagios:用于监控 Hadoop 集群的健康状态,及时发现和处理故障。
7.2.3 相关框架和库
- Hive:基于 Hadoop 的数据仓库工具,提供了类似于 SQL 的查询语言,方便用户进行数据查询和分析。
- Pig:基于 Hadoop 的数据流处理平台,提供了一种简单的脚本语言,用于编写 MapReduce 程序。
- Sqoop:用于在 Hadoop 和关系型数据库之间进行数据传输。
7.3 相关论文著作推荐
7.3.1 经典论文
- “MapReduce: Simplified Data Processing on Large Clusters”:介绍了 MapReduce 模型的原理和应用。
- “The Google File System”:介绍了 Google 文件系统的设计和实现,对 HDFS 有很大的启发。
- “Dremel: Interactive Analysis of Web-Scale Datasets”:介绍了 Google 的交互式数据分析系统,对 Hadoop 的发展有一定的影响。
7.3.2 最新研究成果
可以通过学术搜索引擎,如 IEEE Xplore、ACM Digital Library 等,查找关于 Hadoop 数据存储优化的最新研究成果。
7.3.3 应用案例分析
可以参考一些企业的技术博客和案例分享,了解 Hadoop 在实际应用中的优化策略和经验。
8. 总结:未来发展趋势与挑战
8.1 未来发展趋势
- 与其他技术的融合:Hadoop 将与其他大数据技术,如 Spark、Flink 等进行深度融合,提供更强大的数据处理和分析能力。
- 云化部署:越来越多的企业将选择在云端部署 Hadoop 集群,以降低成本和提高灵活性。
- 智能化应用:Hadoop 将与人工智能、机器学习等技术结合,实现更智能化的数据处理和分析。
8.2 挑战
- 数据安全和隐私:随着数据量的不断增加,数据安全和隐私问题越来越受到关注。需要加强 Hadoop 数据存储的安全机制,保护用户数据的安全和隐私。
- 性能优化:随着数据规模的不断扩大,Hadoop 的性能瓶颈逐渐显现。需要不断优化 Hadoop 的数据存储和处理算法,提高系统的性能。
- 人才短缺:大数据领域的人才短缺是一个普遍问题,特别是掌握 Hadoop 技术的专业人才。需要加强人才培养,提高从业人员的技术水平。
9. 附录:常见问题与解答
9.1 HDFS 数据块大小如何选择?
HDFS 数据块大小的选择需要考虑多个因素,如文件大小、集群规模、网络带宽等。一般来说,数据块大小可以设置为 128MB 或 256MB。如果文件较小,可以适当减小数据块大小;如果文件较大,可以适当增大数据块大小。
9.2 如何提高 Hadoop 集群的可靠性?
可以通过以下方法提高 Hadoop 集群的可靠性:
- 增加数据副本数量:默认情况下,HDFS 的数据副本数量为 3,可以根据实际情况适当增加副本数量。
- 定期备份数据:定期将 HDFS 中的数据备份到其他存储系统中,以防止数据丢失。
- 监控集群状态:使用监控工具实时监控 Hadoop 集群的状态,及时发现和处理故障。
9.3 如何优化 MapReduce 任务的性能?
可以通过以下方法优化 MapReduce 任务的性能:
- 合理设置 Map 和 Reduce 任务的数量:根据数据量和集群资源情况,合理设置 Map 和 Reduce 任务的数量。
- 使用 Combiner 进行局部聚合:在 Map 阶段使用 Combiner 进行局部聚合,减少 Shuffle 阶段的数据传输量。
- 优化数据分区:根据数据的特点,选择合适的数据分区策略,提高数据处理的并行性。
10. 扩展阅读 & 参考资料
10.1 扩展阅读
- 《Hadoop 2实战》:深入介绍了 Hadoop 2.x 版本的新特性和应用。
- 《Spark快速大数据分析》:介绍了 Spark 的原理和应用,与 Hadoop 有一定的关联。
- 《数据挖掘:概念与技术》:介绍了数据挖掘的相关知识,可用于 Hadoop 数据处理和分析。
10.2 参考资料
- Apache Hadoop 官方文档:https://hadoop.apache.org/docs/
- Hadoop 源码:https://github.com/apache/hadoop
- 《Hadoop in Action》:https://www.manning.com/books/hadoop-in-action-second-edition
942

被折叠的 条评论
为什么被折叠?



