摘要
本综述系统梳理了农业机器人的当前应用方向,详细介绍科研室农业机器人的现有功能,并深入剖析农业机器人功能的实现步骤。通过综合分析多篇硕士学位论文及外文文献,总结农业机器人在农业领域的发展现状与技术路径,为农业机器人的进一步研发与推广提供理论参考。
一、农业机器人当前应用方向
1.作物监测与环境感知
农业机器人通过多光谱传感器、无人机和地面移动平台实现作物微观监测,实时分析土壤湿度、病虫害及生长状态。
2.精准喷洒与智能除草
基于计算机视觉的精准喷洒与智能除草技术,通过“感知-决策-执行”闭环,农业机器人通过计算机视觉识别杂草并靶向喷洒农药,减少90%的除草剂使用。
3.自动化采摘
侯小艳,常宗旭创新性的引入轻量级目标检测网络YOLOv4-tiny,实现对油茶果的精准识别;利用3D感知系统在三维空间中得到精确坐标。Kexin Song ,Shuyu Chen, Gang Wang,
Jiangtao, QiXiaomei Gao, Meigi Xiang研究的采摘机器人利用改进的SSD模型实现对果实的损伤。
4.智能播种与栽培管理
L Haibo, D Shuliang, L Zunmin, Y Chuijie等人设计了一种轮式移动机器人实现小麦精量播种技术,建立了机器人运动学模型并进行了仿真,并在不同的工况下进行了试验研究,由于影响因素较多,试验中采用二次正交旋转组合设计法来增加小麦播种合格率。
高精度播种机器人通过地舆测绘优化种子分布,减少作物浪费。室内农场机器人对于作物栽培可以节约水分加速生长。
5.畜牧养殖管理
李硕基于TRIZ思维,设计了一款七自由度挤奶机器人,挤奶机器人的结构创新设计、有限元分析、运动学、动力学以及模拟挤奶实验五个方面进行了研究。
在养殖领域,农业机器人也逐渐崭露头角。在畜禽养殖中,饲喂机器人可以根据畜禽的生长阶段和营养需求,精准投放饲料。李硕研究奶牛挤奶机器人,利用传感器和控制系统,实现奶牛的自动识别、挤奶操作,提高挤奶效率和质量。
6.作物修剪与密度优化
Y Li, S Ma提出了一种改进的RRT-Connect算法来增加修剪机器人导航效率,改进算法能够覆盖整个苹果园,路径长度比RRT-Connect算法缩短32%,整体导航时间比RRT-Connect算法缩短35%。
修剪机器人利用计算机视觉实现精准切割,提升作物健康率。
7.智能灌溉
智能灌溉通过融合传感器技术、人工智能和自动化控制,实现水资源的精准管理与高效利用。
8.智能授粉
李凯通过授粉末端的对靶喷雾模式技术,授粉机械臂控制来实现智能授粉。
智能授粉机器人通过集成环境感知、精准定位、仿生执行和智能决策等技术,模拟自然授粉过程并实现更高效率。
二、科研室机器人现有功能
1.键盘控制移动
2.雷达测试
3. Web浏览器显示摄像头
4. 开启风扇
5. 车道线识别
6. 控制小车沿车道线运动
7.YOLO目标检测
8. 基于YOLO的决策控制
9. 资源监视器
10. 机械臂使用
11.智能灌溉机器人
12.智能授粉机器人
三、农业机器人功能实现步骤
1.作物监测与环境感知实现步骤
(1)硬件配置:多光谱传感器,无人机平台,地面移动平台,边缘计算设备
(2)数据采集与预处理
-
空中监测(无人机)
-
航线规划:利用GIS工具(如QGIS)划分农田网格,设置重叠率(≥70%)和飞行高度。
-
多光谱成像:在特定时段采集不同波段图像,同步记录地理位置和光照条件。
-
实时遥测数据:收集风速、环境温湿度等辅助信息。
-
-
地面监测(移动平台)
-
土壤剖面检测:插入式湿度传感器(如TDR探针)测量不同深度的土壤含水量。
-
近地成像:机械臂搭载微距摄像头拍摄叶片背面,识别早期病虫害(如蚜虫、锈病斑点)。
-
环境感知:LiDAR生成3D点云,分析冠层结构密度;气体传感器检测挥发性有机化合物(VOCs),预警病害。
-
-
数据预处理:辐射校正,几何校正,多源数据融合
(3)数据分析与模型构建
-
特征提取与算法训练
-
植被指数计算:NDVI(健康度)、NDWI(水分)、PSRI(胁迫)等。
-
病虫害识别:YOLOv7或Mask R-CNN模型训练,标注数据集包含病斑、虫害特征。
-
土壤湿度建模:基于介电常数-含水量关系建立回归模型,结合历史数据预测灌溉需求。
-
-
实时分析引擎:边缘计算,云端协同
2.精准喷洒与智能除草
(1)硬件配置
-
喷洒模块:变量喷头:采用电磁阀控制的多级雾化喷头,药箱与管路
-
除草模块:激光除草器,机械除草单元
-
感知系统:多光谱相机,3D ToF摄像头
-
移动平台与通信
-
底盘设计:四轮驱动AGV,配备RTK-GPS(水平精度±1cm)与IMU融合定位,适应复杂地形。
-
通信架构:ROS(机器人操作系统)框架下集成CAN总线(控制执行机构)与5G模块(远程监控)。
-
(2)目标检测
1.数据采集:利用多光谱数据采集,在作物不同生长周期(苗期、拔节期等)拍摄杂草与作物的反射光谱库
2.深度学习模型训练:光谱特征流:ResNet-50提取NDVI(归一化植被指数)与红边波段特征;空间特征流:YOLOv8分割作物与杂草轮廓
(3)精准作业路径规划:全局路径生成,实时避障与局部调整
(4)精准执行与控制:变量喷洒控制,智能除草执行
3.自动化采摘
三维视觉感知模块——数据通信模块——机器人运动抓取模块
(1)硬件配置
1.3D感知系统:3D视觉传感器,近红外光谱仪,激光雷达
2.执行机构:柔性机械臂
(2)目标检测与成熟度判断
1.数据采集:多模态数据集构建:RGB图像,深度信息,光谱数据
2.深度学习模型训练:检测网络:识别果实位置与类别(YOLOv4-tiny)。成熟度分类:结合光谱数据输出成熟度概率。3D姿态估计:计算果实空间坐标与抓取角度。
(3)运动规划与避障
(4)柔性抓取与采摘执行
4.智能播种与栽培管理
(1)硬件配置
1.播种模块:精量排种器,种箱与监测
2.栽培管理模块:多参数传感器,变量施肥机
3.移动平台:自动驾驶底盘,模块化挂载
(2)农田建模与播种规划
1.农田数字化:三维地形扫描,土壤处方图
2.智能播种策略:动态行距调整,播深控制,避障重规划
(3)精准播种执行:导航与路径跟踪,播种质量控制
5.畜牧业养殖管理
(1)1.饲喂机器人硬件配置:精准饲喂设备,个体识别模块,环境感知传感器
2.生长阶段与营养需求建模:生长阶段划分:按日龄、体重分类(如犊牛、育成牛、泌乳 牛)。营养数据库:基于NRC标准构建动态需求表。
3.动态配方模型:优化算法:线性规划(LP)求解最低成本配方,约束条件为营养需求上 限/ 下限。实时调整:根据环境温度增减代谢能需求。
4.精准投放控制:定时定量投放,按需补饲(红外传感器检测料槽余量)
(2)1.挤奶机器人硬件配置:奶牛识别模块,乳房定位与清洁,挤奶执行机构
2.流程:身份验证与数据加载——乳房准备——自动清洁——乳头刺激——挤奶杯吸附——视觉伺服控制——真空度调节——挤奶过程监控——流量曲线分析——电导率报警——挤奶后处理——自动脱杯——乳头药浴
6.作物修剪与密度优化
(1)硬件配置:感知系统
-
环境传感器:光照强度计(PAR传感器)、温湿度探头,评估冠层微气候。
-
多模态传感器:3D视觉系统,高光谱相机,触觉传感器
执行机构-
协作机械臂
-
移动平台:履带式机器人:适应果园复杂地形,搭载RTK-GPS(±1cm定位)实现行间导航。轨道系统(温室场景):顶棚轨道+悬挂式机械臂,覆盖整行作物。
-
边缘计算单元:NVIDIA Jetson AGX Xavier,运行实时决策模型,响应延迟<100ms。
-
-
通信与控制架构:ROS 2框架:集成传感器数据流(点云、图像)、机械臂运动规划与导航控制。5G/光纤冗余通信
(2)数据采集与预处理:多视角扫描,数据融合
(3)修剪规则与ai决策:通过专家知识库来进行修剪,利用ai进行剪枝点位置和疏果决策。
(4)机械臂运动规划:全局路径规划,局部避障调整
(5)精准修剪操作:剪切控制:自适应剪切力:根据枝条直径(触觉传感器测量)调节伺服电机扭矩,伤口保护;疏果操作:柔性夹取,落果回收
(6)密度实时反馈与优化:冠层透光率监测:修剪前后通过PAR传感器测量冠层底部光照。植株间距调整(适用于行栽作物):基于LiDAR扫描的行内植株密度图,标记过密区域,AGV搭载移栽臂进行间苗补苗。
7.智能灌溉
(1)硬件配置:移动平台:底盘类型:四轮驱动AGV;导航系统:RTK-GPS(水平精度±1cm)+ 激光雷达(如Velodyne VLP-16)融合定位。感知模块:土壤多参数探头:插入式TDR土壤湿度传感器;冠层监测:多光谱相机(如Parrot Sequoia+)计算NDVI/NDWI指数;气象站。灌溉执行机构:变量喷灌系统:电磁阀阵列,静电喷雾模块;滴灌溉机械臂。
(2)数据收集与灌溉决策
1.多源数据融合:土壤剖面建模:三维湿度分布:在不同深度部署传感器;电导率-肥力映射:检测土壤肥力值
2.智能灌溉模型:水量平衡模型,根系吸水模型
(3)精准灌溉执行
1.导航与路径规划:全局路径,动态避障
2.变量灌溉控制:喷灌模式,滴灌模式(机器臂精准定位)
8.智能授粉
(1)硬件配置:移动平台:对靶喷雾授粉机器人;感知系统:多模块传感器:高分辨率相机,近红外光谱仪,微气象传感器;授粉执行机构:仿生授粉单元:利用振动模块模拟蜜蜂翅膀振动,利用气流辅助定向吹拂花粉,用软毛刷吸附并转移花粉;精准定位机械臂。
(2)花朵识别与授粉决策
1.数据采集:多光谱数据库构建:拍摄花朵从花蕾到凋零的全周期图像,利用近红外光谱检查花粉活性
2.深度学习模型训练:双阶段检测模型:检测网络:识别花朵位置与开放状态并对花粉活性进行分类;3D定位优化
3.识别精准位置后进行授粉末端的对靶喷雾授粉模式
(3)实时避障:动态障碍处理:通过事件相机检测快速移动物体,触发紧急悬停;柔性机械臂阻碍控制模式实现碰撞后快速撤回。
参考文献
[1]Kexin Song ,Shuyu Chen, Gang Wang,Jiangtao, QiXiaomei Gao, MeigiXiang.Research on High-Precision Target Detection Technology for Tomato-Picking Robots in Sustainable Agriculture[j].Sustainability,2025,17(7):3267-3267
[2]L Haibo, D Shuliang, L Zunmin, Y Chuijie.Study and Experiment on a Wheat L Haibo, D Shuliang, L Zunmin, Y Chuijie.Precision Seeding Robot[j].Journal of Robotics, 2015
[3]S.Mohan Raj, V. Kavitha.Machine Vision BasedAgricultural WeedDetection and SmartHerbicide Spraying[j].Indian Journal of Science and Technology,2018,11(23):1-5
[4]Yechen Li, Shaochun Ma.Navigation of Apple TreePruning Robot Based onImproved RRT-ConnectAlgorithm[j].Agriculture,2023,13(8)
[5]李硕.七自由度挤奶机器人的设计与研究[D].安徽:安徽理工大学,2023
[6]李凯.猕猴桃精准对靶喷雾授粉方法研究[D].陕西:西北农林科技大学,2024
[7]侯小艳,常宗旭.基于机器视觉的农业机器人目标识别技术研究[j].农业技术与装备,2025,2(7):26-28+31