从传统到AI原生:用户画像技术的代际演进分析
关键词:用户画像、代际演进、传统方法、机器学习、AI原生、多模态、大模型
摘要:用户画像是互联网时代企业理解用户的“数字指纹”,其技术发展历经三次代际跃迁。本文将从“给用户贴标签”的生活场景切入,逐步拆解传统规则驱动(1.0)、机器学习赋能(2.0)、AI原生智能(3.0)三个阶段的技术原理与核心差异,结合电商、社交等真实案例,揭示用户画像如何从“静态快照”进化为“动态智能体”,并展望未来多模态融合与大模型赋能的新趋势。
背景介绍
目的和范围
用户画像技术是企业实现“以用户为中心”战略的核心工具。本文将聚焦技术演进主线,覆盖从2000年初的规则统计到2023年大模型驱动的完整代际,帮助读者理解:
- 不同阶段技术的底层逻辑与局限性
- AI原生如何解决传统方法的核心痛点
- 未来用户画像的技术方向与应用边界
预期读者
适合产品经理(需理解技术如何支撑业务)、数据分析师(需掌握工具演进)、AI