自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Agentic AI人工智能与大数据正在引领一场新智能科技革命。

Agentic AI与大数据正引领智能革命。Agentic AI以自主决策为核心,重塑人机协作模式,在智能制造、智慧城市等领域展现巨大潜力。大数据作为基石,提供海量数据支撑与深度洞察,驱动AI持续进化。二者深度融合,构建数据驱动决策新范式,

  • 博客(512)
  • 收藏
  • 关注

原创 别错过这招!提示工程架构师与AI提示设计用户行为模型的实用招

提示工程已经从简单的"提示词编写"进化为一门系统工程。初级阶段:类似汇编语言编程,直接操作"AI指令集"中级阶段:类似高级语言编程,使用模板和模式构建提示高级阶段:类似软件架构设计,从系统层面规划提示工程提示工程架构师正是高级阶段的实践者,他们关注的不是单个提示的优化,而是整个提示系统的设计、构建与维护。用户行为模型是对用户与AI系统交互过程中行为模式的抽象表示,它描述了用户在不同情境下如何思考、行动和反馈。理解用户需求:深入了解用户的真实意图和需求预测用户行为:预判用户在不同情境下的行为反应。

2025-08-13 17:38:37 50

原创 智能农业决策优化:提示工程架构师的AI方法论

定义阶段的目标是清晰界定决策问题和系统需求,避免开发"解决方案寻找问题"的系统。

2025-08-13 16:02:15 159

原创 ClickHouse助力大数据领域的实时风险预警

在当今数据驱动的商业环境中,风险无处不在,且呈现出复杂性、突发性和隐蔽性等特点。无论是金融领域的信用卡欺诈、反洗钱,电商领域的恶意刷单、虚假交易,还是互联网金融的信贷违约预警,亦或是运维监控中的异常检测、安全入侵告警,都对风险识别和响应的“实时性”提出了前所未有的高要求。传统的风险预警系统多基于关系型数据库或早期的批处理大数据技术(如MapReduce、Hive)。数据量爆炸式增长:企业业务的扩张导致数据量呈指数级上升,传统系统难以高效存储和处理PB级甚至EB级数据。数据时效性要求高。

2025-08-13 14:38:49 214

原创 数据产品运营指南:如何提升用户活跃度?这4个策略让数据产品不再“沉睡”

精准分层:通过用户角色、能力、行为的差异化,确保“对的人收到对的信息”;场景化落地:将抽象的“数据能力”转化为具体的“业务解决方案”,让用户“知其然,更知其用”;数据驱动:用数据监测运营效果,找到卡点并快速迭代,避免“凭感觉做决策”;激励留存:通过能力成长、效率提升、社交认同,让用户从“尝试”到“依赖”。李明,资深数据产品运营专家,10年数据中台、BI工具运营经验,曾服务于阿里、京东等企业,主导多个数据产品的用户增长项目,帮助客户将数据产品MAU从20%提升至60%+。

2025-08-13 13:06:31 224

原创 AI应用架构师的数据湖建设方法论:从规划到落地

在人工智能飞速发展的今天,数据已成为驱动业务创新和智能化决策的核心引擎。AI应用,无论是自然语言处理、计算机视觉还是预测分析,都极度依赖大规模、高质量、多维度的数据进行模型训练、验证和持续优化。传统的数据管理方式,如分散的数据库、数据集市,往往面临着“数据孤岛”、“数据烟囱”等问题,难以支撑AI时代对数据的“量”(Volume)、“速”(Velocity)、“类”(Variety)、“值”(Value)和“信”(Veracity)的全方位需求。数据湖(Data Lake)概念的提出,正是为了应对这些挑战。

2025-08-13 11:29:09 211

原创 提示工程架构师必看!AI提示工程伦理考量大汇总

本文将从提示工程架构师的视角,系统梳理AI提示设计全生命周期中的十大核心伦理维度,涵盖公平性、透明度、隐私保护、安全性等关键领域。我们会深入剖析每个维度的风险点(如“提示中的隐性偏见如何被模型放大”)、结合真实案例(如“ChatGPT因提示指令不当生成虚假新闻”)、并提供可落地的提示设计伦理策略(如“去偏提示模板”“隐私脱敏指令”)。最终,我们将构建一套“提示工程伦理评估框架”,帮助架构师在技术实现与伦理责任间找到平衡点。

2025-08-13 09:56:37 175

原创 揭秘顶级提示工程架构师的思考方式:数据驱动决策如何重塑提示设计流程

主观经验 vs. 客观数据定性模糊 vs. 定量精确静态一次性 vs. 动态持续性经验试错 vs. 系统分析黑箱直觉 vs. 透明逻辑要实现提示工程的专业化、规模化和高效化,必须引入一种更科学、更严谨的方法论。数据驱动决策,正是破局之道。接下来,我们将详细阐述数据驱动决策如何为提示工程带来革命性的变化。数据驱动的提示工程是指在提示词的设计、评估、优化和维护的整个生命周期中,都以客观数据作为决策依据和行动指南的方法论。

2025-08-13 03:33:05 562

原创 数据合规终极指南:从理论到实践的全方位解析

2023年7月,某知名社交平台因违反个人信息保护法被处以5000万元罚款;2024年初,某跨境电商因数据出境未申报被罚2000万元;同一季度,某金融科技公司因用户数据过度收集被监管机构责令整改,股价当日暴跌15%…这些并非孤立事件,而是全球数据治理浪潮下的必然结果。当数据成为数字经济的"石油",数据合规已从法律部门的"边缘工作"跃升为决定企业生死的"核心竞争力"。

2025-08-13 02:11:06 141

原创 AI系统弹性扩展中的服务发现:如何让新节点快速接入?

在当今的AI时代,无论是大型语言模型(LLM)的推理服务、实时推荐系统,还是大规模分布式训练任务,都对计算资源有着极高且动态变化的需求。弹性扩展(Elastic Scaling)作为云原生架构的核心特性,允许系统根据实际负载(如请求量、GPU利用率、队列长度等)自动增加或减少计算资源,从而在保证服务质量(QoS)的同时最大化资源利用率,降低成本。然而,弹性扩展并非仅仅是启动或关闭几个服务器/容器那么简单。

2025-08-13 00:39:12 199

原创 情感交互策略在AI提示设计中的创新应用

相反,我觉得你能主动尝试修改,并且在遇到问题时积极求助,这说明你很有学习的积极性和毅力,这才是最重要的!今天的10个新单词被你‘一网打尽’,太了不起了!” —— 想象一下,当你与AI助手交互时,它不再是一个冰冷的、只懂逻辑和指令的机器,而是能感知你的情绪波动,并以理解和支持的姿态回应你,这样的体验会是怎样的?将情感交互策略融入提示设计,意味着我们在撰写提示词时,不仅要考虑任务目标、逻辑结构,更要精心设计AI的“语气”、“态度”、“表达方式”,使其能够更好地理解用户情感、表达适当情感,并引导积极的交互体验。

2025-08-12 23:17:12 293

原创 提示工程架构师的职业道德规范,确保系统稳定性的保障

随着大型语言模型(LLM)技术的飞速发展,提示工程架构师已成为连接人类意图与AI能力的关键角色。本文深入探讨了这一新兴职业的职业道德规范与责任边界,系统阐述了如何在追求技术创新的同时,确保AI系统的稳定性、可靠性和安全性。通过剖析真实案例、建立伦理框架、提供实践指南,本文旨在帮助AI从业者构建负责任的AI系统,平衡技术进步与社会福祉。无论你是资深提示工程师、AI产品负责人,还是对AI伦理感兴趣的技术爱好者,都将从本文获得关于如何在日常工作中践行伦理原则、保障系统稳定的实用 insights。

2025-08-12 21:45:23 470

原创 深度!AI应用架构师剖析企业AI成熟度评估要素

定义:企业AI成熟度是指组织在“应用人工智能技术实现业务目标”过程中,所具备的系统性能力水平。系统性:覆盖战略、数据、技术、人才等全要素,非单一维度的领先。演进性:从“被动应用”到“主动创新”,呈现阶梯式上升趋势。价值导向:最终目标是创造业务价值(降本、增效、创新),而非技术指标达标。与数字化成熟度的区别:数字化成熟度聚焦“业务流程数字化”(如ERP、CRM系统的应用),而AI成熟度聚焦“智能决策与自动化”(如用机器学习优化供应链、用NLP分析客户反馈)。

2025-08-12 20:23:24 228

原创 提升用户体验的关键:提示工程架构师的提示内容设计核心要素

提示工程(Prompt Engineering):是指通过设计和优化输入(提示词)来引导大语言模型(LLM)生成期望输出的过程。它不仅包括提示词的编写,还涉及交互流程设计、上下文管理、错误处理等系统性工作。提示内容设计:是提示工程的核心环节,指根据用户需求、场景特点和模型能力,设计提示词的结构、内容和交互逻辑,以实现“用户意图-提示词-AI输出”的精准映射。

2025-08-12 19:01:27 558

原创 提示工程代码生成器,开启提示工程架构师的创新编程之旅

提示工程是一门通过设计和优化输入提示(Prompts),引导AI模型(尤其是大语言模型,LLM)产生期望输出的工程化方法。

2025-08-12 17:29:31 131

原创 大数据领域数据交易的战略规划与布局

本文将以“战略规划与布局”为核心,从认知层、框架层、执行层三个维度,系统拆解大数据领域数据交易的全流程方法论。数据交易的核心价值与当前产业痛点的深度解析;一套可落地的“数据交易战略规划五维框架”(合规、商业、技术、生态、风险);商业模式设计、合规体系搭建、技术平台选型的实操步骤与案例;不同类型企业(数据持有方、数据需求方、交易平台方)的差异化布局策略;面对政策变化、技术革新、市场竞争的动态调整与长期主义思维。数据交易。

2025-08-12 16:07:18 483

原创 提示工程架构师的精彩之作:上下文工程在智能安防实践的体现

在人工智能技术飞速发展的今天,智能安防系统已从简单的视频监控进化为具备自主决策能力的"AI守卫者"。本文深入探讨了提示工程架构师如何运用上下文工程技术,解决智能安防领域长期存在的误报率高、场景适应性差、决策单一等核心挑战。通过剖析上下文工程的技术原理、架构设计和实现方法,结合四个真实的智能安防实践案例,展示了如何通过精心设计的上下文系统,使AI安防系统具备类似人类安保专家的情境理解能力和决策智慧。本文不仅适合AI工程师和安全从业者参考,也为技术决策者提供了构建下一代智能安防系统的完整蓝图。

2025-08-12 14:30:26 598

原创 AI应用架构师踩过的10个坑:AI驱动知识管理落地的避坑指南

基础层:多源数据接入(结构化/半结构化/非结构化)核心层:统一知识表示(实体-关系模型)应用层:融合查询(图谱检索+向量检索+SQL查询)一句话建议:先画业务实体关系图(ERD),再设计存储架构——知识的价值=实体数量×关系密度。通用模型是“推理引擎”,不是“知识存储器”——企业知识应存储在外部知识库中,而非模型参数里;RAG是“性价比之王”——80%的领域知识管理场景,通过RAG+通用模型即可满足需求,无需盲目追求全量微调;永远保留人工修正入口。

2025-08-12 13:07:54 599

原创 大数据时代:如何构建高效的数据服务体系?

数据服务体系是一个系统性框架,包含了实现数据服务全生命周期管理所需的技术架构、流程规范、组织能力和治理机制。它不是单一技术或产品,而是一个有机生态系统,使数据能在安全可控的前提下,高效流动并转化为业务价值。

2025-08-12 11:35:53 628

原创 揭秘关键!提示工程架构师揭秘Agentic AI在环境监测关键

一个优秀的提示工程架构师,能够通过精心设计的提示,将一个基础的LLM或AI模型“塑造”成为一个强大的、目标明确的、行为可控的AI Agent。这篇文章将尝试从一个“提示工程架构师”的独特视角,深入探讨Agentic AI的核心理念、它为环境监测带来的革命性变化,以及我们如何通过精妙的提示工程,赋予这些AI智能体强大的环境感知与行动能力。Agentic AI则更像是一个“主动的实体”:它有自己的“想法”(目标),会“观察”(感知),会“思考”(规划),会“做事”(行动),还会“从错误中学习”(适应)。

2025-08-12 10:03:33 585

原创 提示工程架构师必藏!6G时代提示工程的10个关键趋势分析!

本文深入探讨了 6G 时代提示工程的 10 个关键趋势,包括多模态融合提示增强、实时动态提示调整等。从每个趋势的分析、代码实现到关键代码解析,再到结果验证、性能优化及常见问题解决,为提示工程架构师提供了全面的技术指引。通过对这些趋势的研究和实践,提示工程将在 6G 时代迎来新的发展机遇,满足各类新兴智能应用对高效、智能、安全交互的需求。希望本文能帮助相关技术人员提前布局,在 6G 相关的提示工程领域取得领先优势。

2025-08-12 03:34:00 496

原创 金融风险AI系统数据安全架构:架构师的加密与脱敏技术实践

特别是在金融风险AI系统中,海量、敏感的金融数据(交易记录、客户信息、市场动态、信用评分等)是训练智能风控模型、预测市场风险、防范欺诈行为的“原油”。当AI的“智慧”遇上数据的“敏感”,金融风险AI系统的数据安全架构便成为了悬在每个架构师头顶的“达摩克利斯之剑”。数据脱敏(Data Masking/Anonymization)是指通过一定的技术手段,对敏感数据进行处理,使其在保留数据的可用性(如用于测试、开发、分析、训练AI模型)的同时,消除或降低其敏感性,无法直接或间接识别到特定个人或实体。

2025-08-12 02:07:08 714

原创 炸裂真相!提示工程在金融科技的应用,提示工程架构师来揭秘

真相一:提示工程的本质与“架构师”的视角:提示工程远不止“写提示词”那么简单,它是一种系统工程和架构设计。真相二:金融科技领域提示工程的核心应用场景:从智能投顾到反欺诈,提示工程如何赋能具体业务。真相三:金融提示工程的核心原则与“避坑”指南:金融场景的特殊性对提示设计提出了哪些严苛要求。真相四:提示工程架构设计:从单体提示到系统级解决方案:如何构建可复用、可管理、高性能的提示工程体系。真相五:提示工程与金融大模型的协同进化:未来趋势与挑战。官方/通用定义。

2025-08-12 00:45:06 294

原创 为什么优秀的提示工程架构师都重视AI提示系统的模块化架构设计?

在人工智能交互系统的演进历程中,我们正经历着一场静默但深刻的革命。随着大型语言模型(LLMs)能力的指数级增长,提示工程——这一连接人类意图与AI能力的关键桥梁,正从简单的"提示词编写"向复杂的"提示系统工程"转变。在这一转变过程中,模块化架构设计已成为区分平庸与卓越AI系统的核心标志。

2025-08-11 23:12:54 303

原创 提示工程智能推荐系统架构师面试题拆解(附答案与架构设计思路)

例如,在数据预处理阶段增加一个“LLM语义解析模块”,在召回阶段增加“基于LLM的语义召回通道”,在精排阶段考虑“LLM打分/重排”或“LLM特征增强”,在结果返回前增加“LLM解释生成器”。它旨在扬长避短,利用LLM的语义理解和生成能力,弥补传统推荐系统的不足,最终构建更智能、更人性化的推荐体验。总而言之,提示工程为智能推荐系统提供了一种全新的、灵活的语义理解和策略控制手段,能够有效弥补传统推荐方法在语义深度、冷启动、可解释性和用户交互方面的不足,推动推荐系统向更智能、更人性化的方向发展。

2025-08-11 21:35:42 633

原创 分布式提示工程内存池设计:3个核心挑战与解决方案

近年来,随着 Large Language Models (LLMs) 的飞速发展,其在自然语言理解、生成、翻译等领域展现出了令人瞩目的能力。LLM 的应用往往离不开精心设计的“提示工程”(Prompt Engineering),即通过构造合适的输入文本(提示词/Prompt)来引导模型产生期望的输出。提示工程的质量直接影响 LLM 的性能。提示词规模与复杂度增加:为了实现更复杂的任务,提示词本身可能变得非常长,包含大量的上下文信息、示例、指令。动态上下文管理。

2025-08-11 20:08:54 806

原创 不可错过的提示工程架构师能力模型构建攻略

许多从业者对“提示工程师”的认知仍停留在“写好提示词”的初级阶段,而对于“提示工程架构师”所需的深度技术素养、系统思维、架构设计能力以及跨领域知识整合能力等高级要求,则显得模糊不清。无论您是希望转型进入AI领域的资深工程师、渴望提升AI应用能力的产品经理,还是负责AI团队建设的技术管理者,这份攻略都将为您提供宝贵的指导,帮助您构建或评估提示工程架构师的核心竞争力,从而在AI驱动的未来占据先机。构建提示工程架构师的能力模型,需要我们超越单一的“技术技能”层面,从更宏观、更系统的视角出发。

2025-08-11 18:36:48 623

原创 提示工程隐私保护的法规更新:架构师必须关注的2024年变化!

这篇万字长文,我将带你深入剖析2024年提示工程隐私保护法规的关键更新,解读其背后的逻辑,梳理提示工程中潜藏的隐私风险,并最终给出架构师在系统设计层面的应对策略和最佳实践。通过对以上风险点的梳理,我们可以清晰地看到,提示工程的隐私保护确实是一个系统性工程,贯穿于数据的整个生命周期,涉及技术、流程、管理等多个层面。提示工程的精妙之处在于,它能将模糊的需求转化为精确的指令,挖掘模型深处的知识,并控制输出的风格、格式和质量。2024年的更新,将是这一趋势的延续和深化,尤其针对AI技术。

2025-08-11 16:59:29 413

原创 大数据质量监控:如何在CAP约束下保证数据可信度

在当今数据驱动的世界中,高质量的数据已成为企业决策和创新的基石。然而,随着大数据技术的迅猛发展和分布式系统的广泛应用,数据质量监控面临着前所未有的挑战。本文深入探讨了在分布式系统CAP约束(一致性、可用性、分区容错性)下实现有效数据质量监控的理论基础、技术方法和最佳实践。通过剖析大数据质量的核心维度,解读CAP定理对数据系统设计的深远影响,本文提供了一套全面的数据质量监控框架,包括实时检测机制、异常预警系统、数据修复策略和可信度评估模型。

2025-08-11 15:22:26 662

原创 从“功能满足”到“情感满足”:提示工程架构师如何升级提示设计?

问题陈述:在当前AI交互中,我们过于关注"功能满足"——即AI能否完成任务,而忽视了"情感满足"——即用户在交互过程中的情感体验和心理需求。这种失衡导致了技术先进但体验冰冷的AI系统,无法建立真正的用户情感连接和长期信任。核心方案:本文提出"情感化提示设计"(Emotional Prompt Design)框架,将心理学、认知科学和叙事设计原则融入提示工程,系统性地指导提示架构师从功能导向转向体验导向的设计范式。

2025-08-11 14:00:29 390

原创 大数据服务在金融行业的应用案例分析

我们正处在一个数据爆炸的时代。根据IDC的预测,到2025年,全球数据圈将增长至175ZB。金融行业作为数据密集型行业的典型代表,天生就与数据紧密相连。从客户信息、交易记录到市场行情、风险指标,金融机构在日常运营中产生和积累了海量数据。然而,传统金融行业在数据处理和应用方面长期面临诸多挑战:数据孤岛严重、处理效率低下、分析手段单一、决策依赖经验等。这些痛点在日新月异的市场环境和日益严苛的监管要求下愈发突出。正是在这样的背景下,大数据技术应运而生并迅速崛起,为金融行业带来了革命性的机遇。

2025-08-11 12:23:22 714

原创 2025城市规划技术白皮书:提示工程架构师解读Agentic AI技术路线图

在城市化进程加速与技术革新的双重驱动下,城市规划正经历着自计算机辅助设计(CAD)以来最深刻的范式转变。本白皮书聚焦Agentic AI(智能体AI)这一突破性技术,从提示工程架构师的独特视角,系统解读其在城市规划领域的技术路线图与实施框架。通过剖析智能体系统如何模拟城市复杂系统、自主协同解决规划难题,本文提供了从概念验证到规模化应用的完整路径图,包括核心技术组件、多智能体协作模式、城市数字孪生集成方案以及伦理治理框架。

2025-08-11 10:51:19 599

原创 某制造企业数据仓库设计:AI应用架构师如何支撑供应链优化?

本文将以某典型制造企业(我们暂且称之为“智造先锋”企业)的实践为例,详细阐述AI应用架构师如何主导或深度参与数据仓库的设计与构建,并以此为基础支撑供应链优化的AI应用。数据仓库的构建为“智造先锋”企业的供应链优化AI应用奠定了坚实的数据基础。接下来,AI应用架构师将主导AI应用架构的设计与实施,将数据仓库中的数据转化为驱动供应链优化的智能洞察和决策。通过本文,希望能为制造业的AI应用架构师、数据架构师、供应链管理者以及所有致力于推动供应链数字化转型的同仁提供有益的参考和启发,共同迈向智能供应链的新纪元。

2025-08-11 09:24:44 832

原创 《震惊!提示工程架构师日常工作中隐藏的代码优化技巧》

在大型语言模型(LLM)应用开发的浪潮中,提示工程架构师正成为连接自然语言理解与软件工程的关键角色。本文深入揭示了这一专业群体日常工作中隐藏的代码优化技巧,这些技术不仅决定了LLM应用的性能上限,还直接影响系统的运营成本与用户体验。通过从信息论、计算复杂性理论和认知科学的交叉视角,我们系统剖析了提示工程中代码优化的独特挑战与解决方案。文章详细阐述了提示压缩算法、上下文窗口管理策略、多轮对话状态优化、推理效率提升等关键技术领域,并提供了经过实战验证的代码实现与架构模式。

2025-08-11 03:00:28 519

原创 提示工程架构师必看:如何通过内容审查提升AI模型的性能?

近年来,人工智能(AI),特别是以大型语言模型(LLMs)为代表的生成式AI技术,取得了令人瞩目的进步。从能写代码的GitHub Copilot,到能生成逼真图像的Midjourney,再到能进行深度对话的ChatGPT,AI正以前所未有的速度和广度渗透到我们生活和工作的方方面面。这些模型展现出了惊人的自然语言理解、生成、推理甚至一定程度的“创造力”。然而,伴随着AI能力的增强,其潜在的风险和挑战也日益凸显。

2025-08-11 01:23:10 441

原创 提示工程架构师必学:如何用Agentic AI实现「提示词版本控制」?实战教程来了

提示词版本控制的本质,是对「AI指令的生命周期」进行规范化管理——包括创建、迭代、追溯、协作、回滚等全流程。但传统的版本控制工具(如Git)只能解决「文本差异」问题,无法理解提示词的「语义逻辑」和「场景关联」。而Agentic AI(智能体AI)的出现,为这一难题提供了突破性解决方案:它能像人类架构师一样,理解提示词的语义变更、自动检测版本需求、智能解决协作冲突、甚至根据场景推荐最优历史版本。本文将带你从0到1实现一个企业级Agentic AI驱动的提示词版本控制系统剖析提示词版本控制的核心需求与挑战。

2025-08-10 23:46:20 1011

原创 大数据领域数据中台的容器化部署实践

数据中台是企业级的、面向数据资产化和服务化的、可持续迭代发展的数据基础设施。它通过整合企业内外部数据,进行标准化处理和统一管理,形成高质量的数据资产,并以服务化方式提供给业务应用,支撑企业的数据驱动决策和业务创新。数据资产化:将原始数据转化为可复用的数据资产服务化封装:将数据能力以标准化服务形式提供平台化支撑:提供统一的数据处理和管理平台组织化保障:建立跨部门的数据团队和协作机制。

2025-08-10 22:24:25 897 1

原创 AI应用架构师指南:企业AI资源优化的4个服务级别协议(SLA)模板

训练作业:一次性、资源密集型,需要高并发GPU算力,核心诉求是“在预算内按时完成”(如“72小时内用10张A100完成BERT-Large预训练”);推理服务:长期在线、实时性要求高,核心诉求是“低延迟+高吞吐量”(如“P99延迟<200ms,每秒处理1000请求”);数据预处理:数据驱动AI的“第一道工序”,核心诉求是“数据质量+处理效率”(如“每小时处理1TB图像数据,特征缺失率<0.1%”);多团队共享。

2025-08-10 21:02:28 269

原创 震撼!提示工程架构师重塑提示系统技术生态培育的变革

模型能力与应用需求的鸿沟:基础模型(Foundation Model)如GPT-4、Claude 3、Gemini Ultra等已具备惊人的通用智能,但企业和个人的实际需求往往高度场景化、专业化。如何弥合通用模型与特定需求之间的鸿沟?提示系统成为关键桥梁。AI规模化应用的系统挑战:当企业从"试点AI"走向"规模化AI",单个提示的优化已无法满足需求。需要系统化设计提示模板、管理提示版本、监控提示效果、优化提示性能——这正是提示系统架构的核心价值。人机协作范式的转变。

2025-08-10 19:30:25 635

原创 大数据运营工具对比:Superset vs Tableau vs Power BI,优缺点及选型建议

大数据运营(Big Data Operations)的核心目标,是通过对海量、多源、异构数据的采集、处理、分析和可视化,驱动业务决策优化、运营效率提升和商业价值增长。而BI工具,则是大数据运营的“最后一公里”——它直接决定了数据能否被业务人员高效理解、灵活探索和快速应用。强大的数据连接与集成能力:无缝对接各类数据源(关系型数据库、数据仓库、大数据平台、API等);高效的数据准备与清洗:支持数据转换、合并、计算,降低业务人员使用门槛;丰富的可视化与交互分析。

2025-08-10 18:00:15 231

原创 颠覆认知!提示工程架构师的提示系统设计新思路

提示工程的本质是“设计提示系统”,而不是“写单个Prompt”;传统提示系统的致命缺陷是“线性上下文”“单Prompt模式”“无反馈闭环”;新思路的核心是“动态上下文树”“提示组件化”“反馈闭环”“自适应策略”,能解决传统系统的缺陷,实现灵活、可扩展、自适应的提示系统。提示工程的发展,正在从“技巧层面”升级到“系统层面”。作为提示工程架构师,我们需要颠覆传统的思维方式,学会设计“能思考、能进化”的提示系统。希望本文的新思路能给你带来启发,让你在提示工程的道路上走得更远。

2025-08-10 15:29:28 373

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除