- 博客(2)
- 收藏
- 关注
原创 实战:从零开始构建BERT,解决IMDb数据集,包含预训练和微调两部分
使用时记得切换路径,本模型构建比较简单,使用现有参数准确率大概只有0.8左右,还有很多可以优化的空间,本文只是引路,仅供参考。用无标签的数据进行预训练。微调并在测试集上使用。
2025-10-17 19:27:58
519
1
原创 【自然语言处理】基于Transformer的LLM演化与应用,以及注意力机制优化等
技术演进分为三个阶段:效率优化阶段(如多查询注意力、FlashAttention)、性能平衡阶段(如分组查询注意力GQA、多头潜在注意力MLA)和多模态扩展阶段(以多Token注意力MTA为代表)。文章还探讨了Transformer在文本生成、智能客服等场景的应用成效,揭示了学术诚信、数据偏见和模型安全性等伦理问题,并从数据治理和注意力机制优化两个维度提出了改进建议。②掌握其在实际业务中的应用方式与潜在风险;③为设计高效、安全、公平的大语言模型提供技术参考与改进思路;
2025-10-12 20:43:58
264
【自然语言处理】基于Transformer的LLM演化与应用,以及注意力机制优化等
2025-10-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人