Python打卡第12天@浙大疏锦行

@浙大疏锦行

遗传算法的实现逻辑

实现逻辑六步曲

1.基因编码(Encode)

▸ 作用:将问题解转换为算法可处理的「DNA格式」

2.初始化种群(Init Population)

▸ 作用:随机生成第一代「候选解群体」

3.适应度评估(Fitness Evaluation)

▸ 作用:给每个解「打分」,决定其繁殖概率

 4.选择父母(Selection)

▸ 作用:根据适应度「概率筛选」优质个体作为繁殖父代

5.基因重组(Crossover & Mutation)

(1)交叉(Crossover)
  • 单点交叉:随机选一个切点交换基因段

  • 均匀交叉:每个基因位随机选择父母来源

 (2)变异(Mutation)
  • 位翻转:以极小概率反转某个基因位(二进制)

  • 高斯扰动:实数编码时加随机噪声

6.进化循环(Generational Loop)

▸ 作用

以上是deepseek的解释。

通俗解释:

我用一个种马的故事来类比遗传算法的实现逻辑,靠比喻理解本质

我的目标是培育出跑得最快的马(也就是寻找最优解)

我的方法是通过多代配种,逐步优化马群的基因。

步骤1:组建初始马群(初始化种群)

随机买来20匹马(初始解),这些马的速度参差不齐

步骤2:赛马测试(适应度评估)

让所有马跑一次,记录每匹的速度(计算适应度)

步骤3:选择种马(选择操作)

跑得越快的马,越有机会被选为种马(高适应度个体高概率选中)

步骤4:配种生育(交叉操作)

优秀基因可能通过重组变得更优

步骤5:基因突变(变异操作)

可能变异出超级赛马(突破当前局部最优解)

步骤6:新一代马群(迭代更新)

用新生的小马驹替换被淘汰的老马,形成新一代马群。

设计优点

并行搜索:种群同时探索多个解,避免陷入局部最优。

定向进化:选择操作引导搜索方向,交叉变异保证多样性。

通用性:适用于离散/连续、单目标/多目标优化问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值