遗传算法的实现逻辑
实现逻辑六步曲
1.基因编码(Encode)
▸ 作用:将问题解转换为算法可处理的「DNA格式」
2.初始化种群(Init Population)
▸ 作用:随机生成第一代「候选解群体」
3.适应度评估(Fitness Evaluation)
▸ 作用:给每个解「打分」,决定其繁殖概率
4.选择父母(Selection)
▸ 作用:根据适应度「概率筛选」优质个体作为繁殖父代
5.基因重组(Crossover & Mutation)
(1)交叉(Crossover):
-
单点交叉:随机选一个切点交换基因段
-
均匀交叉:每个基因位随机选择父母来源
(2)变异(Mutation):
-
位翻转:以极小概率反转某个基因位(二进制)
-
高斯扰动:实数编码时加随机噪声
6.进化循环(Generational Loop)
▸ 作用:
以上是deepseek的解释。
通俗解释:
我用一个种马的故事来类比遗传算法的实现逻辑,靠比喻理解本质
我的目标是培育出跑得最快的马(也就是寻找最优解)
我的方法是通过多代配种,逐步优化马群的基因。
步骤1:组建初始马群(初始化种群)
随机买来20匹马(初始解),这些马的速度参差不齐
步骤2:赛马测试(适应度评估)
让所有马跑一次,记录每匹的速度(计算适应度)
步骤3:选择种马(选择操作)
跑得越快的马,越有机会被选为种马(高适应度个体高概率选中)
步骤4:配种生育(交叉操作)
优秀基因可能通过重组变得更优
步骤5:基因突变(变异操作)
可能变异出超级赛马(突破当前局部最优解)
步骤6:新一代马群(迭代更新)
用新生的小马驹替换被淘汰的老马,形成新一代马群。
设计优点
并行搜索:种群同时探索多个解,避免陷入局部最优。
定向进化:选择操作引导搜索方向,交叉变异保证多样性。
通用性:适用于离散/连续、单目标/多目标优化问题。