第七讲:图论

1.Stockbroker Grapevine

求这张关系图中传播最快的起点,就需要任意两点的最短路,用Floyd算法,然后枚举每个点作为起点的最大传播时间,进行比较最小的就是所求点。

#include <iostream>
using namespace std;
const int MAXN = 1e3 + 5;
int f[MAXN][MAXN],k,o,p,n,m,ans,tool,t;
int main()
{
    cin >> n;
    while (n)
    {
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                if (i != j)
                    f[i][j] = MAXN;
            }
        }
        for (int i = 1; i <= n; i++)
        {
            f[i][i] = 0;
            cin >> m;
            for (int j = 1; j <= m; j++)
            {
                int other;
                cin >> other;
                cin >> f[i][other];
            }
        }
        t = 10000000000;
        for (int k = 1; k <= n; k++)
        {
            for (int i = 1; i <= n; i++)
            {
                for (int j = 1; j <= n; j++)
                {
                    f[i][j] = min(f[i][k] + f[k][j], f[i][j]);
                }
            }
        }
        for (int i = 1; i <= n; i++)
        {
            tool = 0;
            for (int j = 1; j <= n; j++)
            {
                tool = max(tool, f[i][j]);
            }
            if (tool < t)
            {
                t = tool;
                ans = i;
            }
        }
        if (t == 10000000000)
            cout << "disjoint" << endl;
        else
            cout << ans << ' ' << t << endl;
        cin>>n;
    }
}

2.树的直径

求树上的最大路径长,枚举每个点的最大路径长,就是它的树长中最大的两个之和,他的最大的树长就是最大子树长+1,最后就得到直径。

#include <iostream>
using namespace std;
const int MAXN = 1e5 + 5;
struct
{
    int father;
    int r1, r2;
}node[MAXN];
int n, u, v,ans=0;
int main()
{
    cin >> n;
    for (int i = 1; i <= n-1; i++)
    {
        cin >> u >> v;
        node[v].father = u;
    }
    for (int i = n; i >= 1; i--)
    {
        if (node[node[i].father].r1 < node[i].r1 + 1)
        {
            node[node[i].father].r2 = node[node[i].father].r1;
            node[node[i].father].r1 = node[i].r1 + 1;
        }
        else
        {
            node[node[i].father].r2 = max(node[node[i].father].r2, node[i].r1 + 1);
        }
    }
    for (int i = 1; i <= n; i++)
    {
        ans = max(ans, node[i].r1 + node[i].r2 );
    }
    cout << ans;
}

3.Invitation Cards

题目要求我们求出从起始站到其他所有站点的最短路,我们可以用dijkstra算法来计算,但还要求我们求出返回的最短路径,即从所有站点到起始站的最短路,事实上我们可以反向建图,把路径的起点与终点调换,就转化成求起始站到其他站的最短路,再用一次dijkstra算法来算。

#include <iostream>
#include <queue>
using namespace std;
const int MAXN = 1e6 + 6;
int head[MAXN], rhead[MAXN], len, rlen,d[MAXN],ans;
bool vis[MAXN];
struct
{
    int v, w, next;
}e[MAXN],re[MAXN];
struct Node
{
    int v, d;
    Node(int v,int d):v(v),d(d){}
    bool operator <(const Node &w)const
    {
        return d > w.d;
    }
};
void add(int u, int v, int w)
{
    e[len].v = v;
    e[len].next = head[u];
    e[len].w = w;
    head[u] = len++;
}
void radd(int u, int v, int w)
{
    re[rlen].v = v;
    re[rlen].next = rhead[u];
    re[rlen].w = w;
    rhead[u] = rlen++;
}
void dijkstra(int u)
{
    memset(d, 0x3f, sizeof(d));
    memset(vis, false, sizeof(vis));
    d[u] = 0;
    priority_queue<Node>ac;
    ac.push(Node(u, d[u]));
    while (!ac.empty())
    {
        u = ac.top().v;
        ac.pop();
        if (vis[u])
            continue;
        vis[u] = true;
        for (int i = head[u]; i; i = e[i].next)
        {
            int v = e[i].v;
            int w = e[i].w;
            if (!vis[v] && d[v] > d[u] + w)
            {
                d[v] = d[u] + w;
                ac.push(Node(v, d[v]));
            }
        }
    }
}
int main()
{
    int n,p,q;
    cin >> n;
    for (int some = 1; some <= n; some++)
    {
        cin >> p >> q;
        memset(head, 0, sizeof(head));
        memset(rhead, 0, sizeof(rhead));
        ans = 0, len = 1, rlen = 1;
        int u, v, w;
        for (int i = 1; i <= q; i++)
        {
            cin >> u >> v >> w;
            add(u, v, w);
            radd(v, u, w);
        }
        dijkstra(1);
        for (int i = 1; i <= p; i++)
        {
            ans += d[i];
        }
        memcpy(head, rhead, sizeof(rhead));
        memcpy(e, re, sizeof(re));
        dijkstra(1);
        for (int i = 1; i <= p; i++)
        {
            ans += d[i];
        }
        cout << ans << endl;
    }
}

4.战略游戏

首先我们看题目可以知道士兵在子节点站岗不如到父节点站岗,因为如果父节点没有站岗,其所有子节点都要有士兵,从最小的节点开始遍历。但是这种方法无法处理既没有子节点也没有父节点的孤儿节点,要把它找出来在放士兵。

#include <iostream>
using namespace std;
const int MAXN = 1505;
struct
{
    int father,son;
    bool soldier;
}node[MAXN];
int n, i, k, ans = 0,son;
int main()
{
    cin >> n;
    node[0].father = -1;
    for (int j = 1; j <= n; j++)
    {
        cin >> i>> k;
        node[i].son = k;
        for (int op = 1; op <= k; op++)
        {
            cin >> son;
            node[son].father = i;
        }
    }
    for (int j = n - 1; j >= 1; j--)
    {
        if (node[j].soldier==false)
        {
            node[node[j].father].soldier = true;
        }
    }
    if (node[0].soldier == false)
    {
        for (int j = 1; j <= n-1; j++)
        {
            if (node[j].father == 0&&node[j].soldier==false)
            {
                node[0].soldier = true;
            }
        }
        if(node[0].son==0)
            node[0].soldier = true;
    }
    for (int j = n - 1; j >= 0; j--)
    {
        if (node[j].soldier)
        {
            ans++;
        }
    }
    cout << ans;
}

学习总结:

初步了解了图和树的概念,了解掌握了Floyd算法和Dijkstra算法,对树形DP有了更深的了解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值