1.Stockbroker Grapevine
求这张关系图中传播最快的起点,就需要任意两点的最短路,用Floyd算法,然后枚举每个点作为起点的最大传播时间,进行比较最小的就是所求点。
#include <iostream>
using namespace std;
const int MAXN = 1e3 + 5;
int f[MAXN][MAXN],k,o,p,n,m,ans,tool,t;
int main()
{
cin >> n;
while (n)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (i != j)
f[i][j] = MAXN;
}
}
for (int i = 1; i <= n; i++)
{
f[i][i] = 0;
cin >> m;
for (int j = 1; j <= m; j++)
{
int other;
cin >> other;
cin >> f[i][other];
}
}
t = 10000000000;
for (int k = 1; k <= n; k++)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
f[i][j] = min(f[i][k] + f[k][j], f[i][j]);
}
}
}
for (int i = 1; i <= n; i++)
{
tool = 0;
for (int j = 1; j <= n; j++)
{
tool = max(tool, f[i][j]);
}
if (tool < t)
{
t = tool;
ans = i;
}
}
if (t == 10000000000)
cout << "disjoint" << endl;
else
cout << ans << ' ' << t << endl;
cin>>n;
}
}
2.树的直径
求树上的最大路径长,枚举每个点的最大路径长,就是它的树长中最大的两个之和,他的最大的树长就是最大子树长+1,最后就得到直径。
#include <iostream>
using namespace std;
const int MAXN = 1e5 + 5;
struct
{
int father;
int r1, r2;
}node[MAXN];
int n, u, v,ans=0;
int main()
{
cin >> n;
for (int i = 1; i <= n-1; i++)
{
cin >> u >> v;
node[v].father = u;
}
for (int i = n; i >= 1; i--)
{
if (node[node[i].father].r1 < node[i].r1 + 1)
{
node[node[i].father].r2 = node[node[i].father].r1;
node[node[i].father].r1 = node[i].r1 + 1;
}
else
{
node[node[i].father].r2 = max(node[node[i].father].r2, node[i].r1 + 1);
}
}
for (int i = 1; i <= n; i++)
{
ans = max(ans, node[i].r1 + node[i].r2 );
}
cout << ans;
}
3.Invitation Cards
题目要求我们求出从起始站到其他所有站点的最短路,我们可以用dijkstra算法来计算,但还要求我们求出返回的最短路径,即从所有站点到起始站的最短路,事实上我们可以反向建图,把路径的起点与终点调换,就转化成求起始站到其他站的最短路,再用一次dijkstra算法来算。
#include <iostream>
#include <queue>
using namespace std;
const int MAXN = 1e6 + 6;
int head[MAXN], rhead[MAXN], len, rlen,d[MAXN],ans;
bool vis[MAXN];
struct
{
int v, w, next;
}e[MAXN],re[MAXN];
struct Node
{
int v, d;
Node(int v,int d):v(v),d(d){}
bool operator <(const Node &w)const
{
return d > w.d;
}
};
void add(int u, int v, int w)
{
e[len].v = v;
e[len].next = head[u];
e[len].w = w;
head[u] = len++;
}
void radd(int u, int v, int w)
{
re[rlen].v = v;
re[rlen].next = rhead[u];
re[rlen].w = w;
rhead[u] = rlen++;
}
void dijkstra(int u)
{
memset(d, 0x3f, sizeof(d));
memset(vis, false, sizeof(vis));
d[u] = 0;
priority_queue<Node>ac;
ac.push(Node(u, d[u]));
while (!ac.empty())
{
u = ac.top().v;
ac.pop();
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i; i = e[i].next)
{
int v = e[i].v;
int w = e[i].w;
if (!vis[v] && d[v] > d[u] + w)
{
d[v] = d[u] + w;
ac.push(Node(v, d[v]));
}
}
}
}
int main()
{
int n,p,q;
cin >> n;
for (int some = 1; some <= n; some++)
{
cin >> p >> q;
memset(head, 0, sizeof(head));
memset(rhead, 0, sizeof(rhead));
ans = 0, len = 1, rlen = 1;
int u, v, w;
for (int i = 1; i <= q; i++)
{
cin >> u >> v >> w;
add(u, v, w);
radd(v, u, w);
}
dijkstra(1);
for (int i = 1; i <= p; i++)
{
ans += d[i];
}
memcpy(head, rhead, sizeof(rhead));
memcpy(e, re, sizeof(re));
dijkstra(1);
for (int i = 1; i <= p; i++)
{
ans += d[i];
}
cout << ans << endl;
}
}
4.战略游戏
首先我们看题目可以知道士兵在子节点站岗不如到父节点站岗,因为如果父节点没有站岗,其所有子节点都要有士兵,从最小的节点开始遍历。但是这种方法无法处理既没有子节点也没有父节点的孤儿节点,要把它找出来在放士兵。
#include <iostream>
using namespace std;
const int MAXN = 1505;
struct
{
int father,son;
bool soldier;
}node[MAXN];
int n, i, k, ans = 0,son;
int main()
{
cin >> n;
node[0].father = -1;
for (int j = 1; j <= n; j++)
{
cin >> i>> k;
node[i].son = k;
for (int op = 1; op <= k; op++)
{
cin >> son;
node[son].father = i;
}
}
for (int j = n - 1; j >= 1; j--)
{
if (node[j].soldier==false)
{
node[node[j].father].soldier = true;
}
}
if (node[0].soldier == false)
{
for (int j = 1; j <= n-1; j++)
{
if (node[j].father == 0&&node[j].soldier==false)
{
node[0].soldier = true;
}
}
if(node[0].son==0)
node[0].soldier = true;
}
for (int j = n - 1; j >= 0; j--)
{
if (node[j].soldier)
{
ans++;
}
}
cout << ans;
}
学习总结:
初步了解了图和树的概念,了解掌握了Floyd算法和Dijkstra算法,对树形DP有了更深的了解。