人工智能或计算机机器人视觉中,最核心的问题有两个。
一个是,无论扫描还是障碍物鉴别,都存在辨识度问题。
人体中的视觉,却没有这个问题。
是如何解决的呢?
那就是同类模糊化与预设模型。
比如,看到石头,石头的同类都会被石头这个【自我虚像】中的印象记忆覆盖。
所以,在人的视觉里,是不会有过多记忆储存的。因此,不会占据多少算法。
我们每天的生活,大部分都是重复场景,重复物品。这些都是重复。可以说,不会占用算法。
只有新的东西出现时,脑力才会动用一点点。
所以,要建设新的【知识库】,是指这种同类型知识库。
模糊化,不是记忆模糊,而是同类可以模糊化归类。羊,可以是绵阳山羊羚羊。而知识库里,就是羊,替代所有羊类。
碰到羊类似,就会归类同化。
这就是汉字的另一个优势。只是,汉字毕竟是二类解读。并不是源头。所以,丢失的无法解读的多。
第二个,视觉与场景同步。
在计算机上,视觉是平面的。只有逻辑与算法。
而人的视觉里,视觉与场景是共同的。人脑中,视觉,就是场景。是实物。
也就是说,视觉的同时,都是有对应的属性的。门,是坚硬的,有韧性。墙壁是坚硬的,反弹刚硬。
这些属性在知识库中,直接在视觉同步。
形成了我们的日常。
所以,我们到了新环境,这两步同时运行。
如果能实现出来,智能视觉,就会刷新现在的一切。真正与人类似。