这是不是你?看到干货文章疯狂收藏,结果躺在收藏夹吃灰;想了解学习最新的AI工具,点进去却被满屏专业名词劝退;充满期待地点开《一分钟教你用AI赚钱》,《3分钟教你用AI生成10条短视频,播放量百万》,以为是“什么武功秘籍”,看完后才发现是九块九包邮的"屠龙术"...
概括起来大家在做知识采集过程中,或多或少会遇到这几个问题:
-
没时间去整理筛选资料
-
不知道哪些适合阅读
-
部分文章专业性强看不懂/对我无用
-
充斥标题党营销文筛选难
-
资料收藏后闲置率高
关于AI知识库之前已经写过2篇文章了,有兴趣的小伙伴可以点击链接考古:
-
-1.0版本:产品经理怎么用AI搭建你的专属知识库?(保姆级教程) – 人人都是产品经理主要尝试让AI帮我做资料整理;
-
-2.0版本:告别熬夜整理!你的AI知识库该学会自己“觅食”了:关键词自动检索+资料归档+整理汇报 – 人人都是产品经理主要介绍了怎么让AI自动帮我收集资料。
-
本篇3.0版本将在之前的基础上,针对知识分类整理,资料的应用效率等方面对AI知识库进行升级,感兴趣的话可以往下看。
一、方案的思考
总体方案思维导图
整体方案我是从资料从哪里来、资料怎么整理、资料怎么应用三大方面思考拆解为以下脑图:
1)资料来源
知识库的素材来源有两大路径:一方面是希望由AI自动在网站上爬取,根据我设定好的规则筛选摘录,另一方面是我自己平时看到觉得好的文章,按照规则摘录进知识库。由此可以梳理出以下两条工作流:
2)资料规范
不管是人工或者是AI检索的文章是很多样的,需要按照统一的标准规范记录到知识库,这样后续不论是自己看,还是检索或者AI推荐阅读文章规则,都有依据。这里我是根据我的使用习惯,设定了以下几个字段。并据此在飞书中创建知识库的多维表格。(对应表格中列表应该选择的类型详见下方截图)
3)资料应用
AI可以替代人工去收集整理资料,但是无法替代人去学习。收集有用的资料进知识库只是第一步,更重要的是后续要怎么用起来。这里我考虑了两大场景,一方面是当用户主动输入需求发起检索,另一方面是希望知识库Agent能够自动定时的推送,提醒用户来阅读。由此也梳理了对应工作流:
二、详细的方案设计
-
智能体搭建平台:Coze
-
搭建内容:工作流(Workflow)X5,智能体X1
-
操作路径:工作空间-资源库-资源-工作流
-
平台费用:创建免费,工作流运行时调用插件及大模型需消耗Token。平台账号可免费注册,每日有免费Token额度,超额需充值
步骤1:创建人工精选文章整理工作流
-
目标及场景:当“我”看到觉得有价值的文章内容时候,只需要给我的智能体发送文章链接,智能体就可以帮我通过文章链接,整理成对应的内容,收录进知识库。
-
工作流节点:下图是配置完成的工作流,除了必须的开始及结束节点外,主要包含4大节点:
- 链接读取:这是一个插件,选择[添加节点]后选择[插件],在插件库中选择扣子官方提供的插件。它用于读取文章链接中的全部信息,用于后续大模型的解析和内容整理;
- 大模型①:主要用于分析整理内容,下图是该节点对应输入和输出的字段和格式。输入内容直接引用上一节点插件输出的title和content字段,输出的内容对应的是后续要写入知识库(飞书表格)的字段。在大模型的提示词中,我主要给它定义了4项任务:1)撰写精炼摘要并过滤广告信息;2)通过特征匹配将内容归类为5种专业主题或"其他";3)按严格格式输出包含标题、摘要、链接、类型、主题、时间的结构化数据,强调信息精准性、格式规范性和主题判断的逻辑层次;
- 大模型②:主要是用于将大模型①输出的字段,按照飞书文档要求的传入格式进行整理,这里也可以使用<代码>节点进行替代;
- 飞书多维表格:这也是一个插件节点,在插件库中,检索“飞书”,找到下图中的插件。app_token字段复制上前面创建好的文档地址,records字段直接引用大模型②输出的字段;
- 链接好工作流全部节点后,点击试运行,随便贴进一个文章的链接,看是否能够运行成功,飞书多维表格返回“success”即代表写入成功,即可点击右上角发布;
步骤2:创建AI自动采集信息的工作流
-
目标及场景:AI可以固定频次从高质量网站(如:人人都是产品经理)采集AI相关优质文章,按照我要求的格式整理进我的知识库(飞书文档)
-
工作流节点:下图是配置完成的工作流,除了必须的开始及结束节点外,主要包含3大节点:
- 文章获取:这是一个插件节点,可通过插件库中检索“人人都是产品经理”,这个插件的能力是可以从人人都是产品经理的网站,帮我一次性获取到30条的热门文章标题/热度/时间/文章链接等。
- 同理,也可以选择从别的平台获取文章的插件。我是觉得这个平台始终坚持人工审核文章内容,文章质量和学习性比很多平台高很多,而且热榜是编辑团队已经审核并且受到众多读者喜欢的,筛选出来的文章质量有一定的保证。
- 大模型:这里大模型节点,主要是用于筛选AI相关的文章。上一节点中30多条的热门文章可能不都是AI相关的,所以这里在大模型提示词中,要求它整理出与AI相关的文章链接。
- 循环:添加循环节点包含循环及循环体两大部分,循环体中是具体的循环动作,循环则控制了该节点输入和输出的字段。这里的循环节点,主要负责是将上一节点中大模型筛选出来的AI相关文章,逐条文章url进行解析,内容提取分类,写入飞书知识库(这里的步骤和步骤1中创建的人工精选文章整理工作流一致,所以这里直接复用步骤1中的工作流)。
- 在循环体中还有一个设置变量的节点,这个节点的目的是为了保证每一篇文章的url都需要遍历这个流程而添加的。
- 链接完所有的流程,试运行成功后,点击右上角发布工作流。
步骤3:创建用户主动检索工作流
-
目标及场景:当用户输入想要了解的内容时,智能体可以检索知识库中的文章,整理推荐出最匹配用户需求的文章。(实际呈现效果如下图)
-
工作流节点:下图是配置完成的工作流,除了必须的开始及结束节点外,主要包含2大节点:
- 表格内容读取:这是一个插件节点,通过插件库添加,在插件库中搜索飞书多维表格,找到下图的插件选择添加,app_token处输入要读取的多维表格链接。
- 大模型:这里我通过提示词给AI的任务是,让它通过剖析用户查询意图,依据特定规则从知识库筛选匹配文章,按评分机制计算总分并按规则推荐,还需在用户有疑问时解释评分依据,按要求格式呈现至多 5 条推荐结果。下图是我设计的推荐评分体系。
- 链接完所有的流程,试运行成功后,点击右上角发布工作流。
步骤4:创建自动内容推荐工作流
-
目标及场景:当用户没有主动要求检索内容时,Agent可主动触发推荐最新收录的文章,附上文章推荐语方便用户筛选,点击链接可直接跳转阅读原文。
-
工作流节点:下图是配置完成的工作流,除了必须的开始及结束节点外,主要包含2大节点:
- 表格内容读取:这是一个插件节点,通过插件库添加,在插件库中搜索飞书多维表格,找到下图的插件选择添加,app_token处输入要读取的多维表格链接。
- 大模型:这里大模型的提示词与步骤3中的有所不同,定义了它从指定知识库中按收录时间最近优先、同收录时间按发布时间由近及远的规则筛选最新文章,结合摘要或主题内容生成推荐语,按特定格式展示标题、链接及推荐语,无文章时告知用户 “当前没有可推荐的文章”。
- 链接完所有的流程,试运行成功后,点击右上角发布工作流。
步骤5:创建文章内容播客工作流
-
目标及场景:实现下班途中碎片化途中,播放文章内容,提升知识库资料利用率。(下图是试运行的效果,最终会生成一个语音url)
-
工作流节点:下图是配置完成的工作流,除了必须的开始及结束节点外,主要包含3大节点:
- 链接读取:这是一个插件节点,通过插件库添加,用于获取链接中的内容;
- 大模型:因为上一节点,插件会输出很多的字段,需要整理成更流畅清晰的文本内容;
- 文本转语音:这也是一个插件节点,在插件库中检索“文本转语音”即可找到,是扣子官方出的一个插件。test变量直接引用上一节点中大模型整理好的文本即可。
步骤6:创建智能体
-
目标及场景:为了方便后续的使用,需要创建一个智能体,通过设置提示词,配置工作流及定时触发任务,实现以上所有工作流的串联和协同调用。
-
智能体任务:用下表整理了智能体要执行的工作流和对应工作流执行的条件;
-
智能体配置
- 添加插件:在插件栏添加两大插件,获取当前时间及连接读取,这是为了让智能体能够识别用户跟它对话的时间,当用户给它发送文章链接时,可以先通过插件读取内容,判断是否还有营销卖课引流等信息,做初次筛选;
- 添加工作流:添加上述方案中所有配置好的工作流,以便智能体能清楚的知道后续要调用哪些工作流;
- 添加触发器:这里配置了定时收集AI相关文章还有每日自动推荐文章内容的两条工作流,触发器支持定时或者按照事件触发两种类型,这里用的是定时触发;
- 编排人设:在左侧的人设与恢复逻辑中,定义好智能体的工作流,什么情况下调用什么工作流,具体的工作流用{{}}进行引用;
- 预览与调试:在右侧进行测试,确认完成后,点击右上角发布;
附录
智能体使用
知识库3.0已经上架在扣子的应用商城,PC端检索“笛仁杰AI知识库3.0”可以免费体验。移动端可微信公众号搜索“笛仁杰聊AIGC”菜单,阅读原文链接免费体验。(无套路,不卖课,仅分享)
下图为知识库部分内容截图,会持续更新,精选优质AI内容。
心得分享
现在铺天盖地AI的资讯文章很多,越是在学习,越是感觉“知道的越多,知道的越少”。在摸着石头过河中,我对于AI学习也有了一些心得:
-
AI学习要广撒网,但是一定要收线
AI领域的知识体系庞大且交叉性强,从自然语言处理(NLP)到计算机视觉(CV),从强化学习到多模态模型,底层逻辑相互关联。每一个分支展开都是庞大的学习量,也都值得深入学习摸索。但是人的精力毕竟是有限的,如果广而全最后只能狗熊掰棒子。自己要给自己定一条主线,根据主线再去找补齐主线的碎片化知识。(BTW这也是我为什么一直思考怎么迭代知识库的原因。)这样效率才会比较高,不会陷入迷茫。
-
AI是阿基米德的支点,不是神话中的阿拉丁神灯
AI不是神灯,只要许愿就能满足所有需求,它本质是“杠杆”,它只能放大人的能力,无法替代人的思考和判断。AI 依赖于数据和算法,没有高质量的数据,AI 模型就无法进行有效的训练。同时AI 的决策是基于数据和数学模型它可能会出现错误或者偏差。
部分营销号鼓吹“AI一键生成爆款文章”、“掌握某某AI技术,一夜暴富”看起来真的很吸引人,但是可能作者完全没有体验过,就吹得天花乱坠。面对此类资讯或者产出时,始终要有自己的判断,不能盲信盲从。
-
沉淀才是护城河
AI淘汰的不是人,而是不会用AI的人。尽管AI技术迭代极快,但底层方法论和实战经验会随时间增值。通过撰写技术笔记、复盘项目案例、构建个人知识体系,才能在 AI 领域建立起属于自己的壁垒。
最后感谢你阅读到这儿,原创不易,期待你的评论与点赞~