从零开始的线程池(上篇)

从零开始的ThreadPoolExecutor(上篇)

更加美观清晰的版本在:Github

从零开始的线程池(下篇)

我们会分成5步搭建一个功能尽可能完善的线程池:

  1. 含有固定数量工作的线程 + 任务队列
  2. 支持任务拒绝策略
  3. 支持动态线程增长 & 回收
  4. 线程池的安全关闭
    4.1. 线程池的正常关闭
    4.2. 线程池的强制关闭
    4.3. 线程池的等待
  5. LinkedBlockingQueuevsArrayBlockingQueue

1. 拥有固定数量工作的线程 + 任务队列

一个最小化的线程池必须包含三个功能:接受任务、缓存队列,以及派发给工作线程。

我们希望线程池中的线程执行逻辑是固定的、可管理的,因此,我们创建的线程需要拥有相同的执行逻辑.
最好的做法是将这些线程存储在一个集合或数组中,然后遍历指定行为。

先来看看基本架构:既然要创建一个最简单的线程池,那么需要一个管理任务的容器:任务队列,以及一个管理线程的容器:

public class MyThreadPoolExecutor {
    
    private final BlockingQueue<Runnable> taskQueue;
    private Thread[] threads;
}

光有线程还不行,我们必须给线程统一指定执行动作,线程才能知道要如何工作。
一个Runnable对象可以看成是一个线程所要执行的任务。new Thread(Runnable command)其实就是给线程指定动作。

int poolSize; // 根据用户传过来的poolSize指定大小
int nThreadNum; // 根据用户传过来的nThreadNum指定线程池中线程的数量
taskQueue = new LinkedBlockingQueue<>(poolSize); // 任务队列
threads = new Thread[nThreadNum]; // 线程池中的线程

Runnable command = () -> {
    try {
        while (true) {
            Runnable task = taskQueue.take(); // 任务队列中的任务,阻塞地获取任务
            task.run();
        }
    } catch (Exception e) {
        log.err(e.getMessage());
    }
}; // 线程池中线程要执行的动作指令
        
for (int i = 0; i < nThreadNum; i++) {
    threads[i] = new Thread(command); // 将带有指定动作的线程加入线程池(数组)中
    thread[i].start(); // 启动线程
}

上面的这些看上去比较繁琐,我们可以为线程池中的那些线程封装成Worker类。加一个指定线程名字的构造方法有利于测试的进行。
注意,一个Worker实际上还是一个线程,只不过名字从Thread换成了Worker

private class Worker extends Thread {
    public Worker(String name) {
        super(name);
    }
    
    @Override
    public void run() {
        try {
            while (true) {
                Runnable task = taskQueue.take(); // 阻塞地获取任务
                task.run(); //执行任务
            }
        } catch (InterruptedException e) {
            log.error(e.getMessage());
        }
    }
}

所以我们的线程池的基本结构可以写成:

public class MyThreadPoolExecutor {

    private final BlockingQueue<Runnable> taskQueue;
    private final Worker[] workers;

    public MyThreadPoolExecutor(int poolSize, int nThreadNum) {
        taskQueue = new LinkedBlockingQueue<>(poolSize); // 也可以是ArrayBlockingQueue
        workers = new Worker[nThreadNum];
        
        for (int i = 0; i < nThreadNum; i++) {
            workers[i] = new Worker("worker-" + i);
            workers[i].start();
        }
    }

//    private class Worker extends Thread {
//        public Worker(String name) {
//            super(name);
//        }
//
//        @Override
//        public void run() {
//            try {
//                while (true) {
//                    Runnable task = taskQueue.take(); // 阻塞地获取任务
//                    task.run(); //执行任务
//                }
//            } catch (InterruptedException e) {
//                log.error(e.getMessage());
//            }
//        }
//    }
}

这里的LinkedBlockingQueue也可以换成ArrayBlockingQueue。两者的区别会在最后讨论。

指定完线程池的基本结构后,我们需要为线程池创建调度任务的方法:execute。 由于目前我们想创建一个极简版本的线程池,
我们只将execute方法定义为一个单纯向任务队列中添加任务的方法。这个方法可以是offerput。我们稍后在测试线程池行为时会对比这两种方法。

public void execute(Runnable task) {
    // 使用offer,任务队列满不会阻塞
    // put则会在队列满后阻塞,直到队列非满才会向队列中再次添加任务
    taskQueue.execute(task);
}

至此,一个完成的最小线程池模型就创建好了。它包括了接收任务 → 缓存队列 → 派发给工作线程三个核心功能:

@Slf4j
public class MyThreadPoolExecutor {
    private final BlockingQueue<Runnable> taskQueue;

    public MyThreadPoolExecutor(int poolSize, int nThreadNum) {
        taskQueue = new LinkedBlockingQueue<>(5);
        Worker[] workers = new Worker[nThreadNum];

        for (int i = 0; i < nThreadNum; i++) {
            workers[i] = new Worker("worker-" + i);
            workers[i].start();
        }
    }

    public void execute(Runnable task) {
        taskQueue.offer(task); // 不考虑拒绝策略
        // 使用offer,任务队列满不会阻塞;put则会阻塞
        // 会导致测试类行为差异非常大
    }


    private class Worker extends Thread {
        public Worker(String name) {
            super(name);
        }

        @Override
        public void run() {
            try {
                while (true) {
                    Runnable task = taskQueue.take(); // 阻塞地获取任务
                    task.run(); //执行任务
                }
            } catch (InterruptedException e) {
                log.error(e.getMessage());
            }
        }
    }
}

我们可以写一个测试类来看看这个自定义最简化的线程池的行为:

@Slf4j
class TestMyThreadPool {
    public static void main(String[] args) {
        MyThreadPoolExecutor pool = new MyThreadPoolExecutor(3, 3);
        AtomicInteger taskId = new AtomicInteger();

        while (true) {
            int currentId = taskId.getAndIncrement();

            pool.execute(() -> {
                // 唯一的任务是打印一条通知并睡眠1s
                log.info("{} executing task {}", Thread.currentThread().getName(), currentId);
                try {
                    Thread.sleep(1000); // 模拟任务耗时
                } catch (InterruptedException e) {
                    log.error(e.getMessage());
                }
            });
        }
    }
}

运行结果如下:

14:48:40.837 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 2
14:48:40.837 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 0
14:48:40.837 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 1
14:48:41.845 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 3
14:48:41.845 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 23
14:48:41.845 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 4
14:48:42.855 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 24
14:48:42.855 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 169584178
14:48:42.855 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 44
14:48:43.863 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 276103748
14:48:43.863 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 169584180
14:48:43.863 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 169584179
14:48:44.865 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 276106658
14:48:44.865 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 276111114
14:48:44.866 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 385859508
14:48:45.865 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 385862734

可以看到,currentId增长得非常快,如果再运行久一点甚至会发生Integer超界现象。这是因为我们的execute方法使用的是非阻塞式的offer
线程池在添给任务队列添加任务的速度是非常快的,这就会导致工作线程在睡眠期间,currentId已经被增加了上百万甚至亿次,也就是往任务队列中写了这么多次任务。
offer的特点是:如果BlockingQueue已满,元素就会被放弃添加,并返回一个false。这就意味着中间很多任务都被放弃写入,且我们没有被通知。

我们可以尝试将offer更改成put来看看会发生什么。由于put的特点是:当BlockingQueue满时,阻塞式等待任务写入,所以我们可以预计,currentId会按顺序增长。

运行结果如下:

14:59:18.250 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 0
14:59:18.250 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 1
14:59:18.250 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 2
14:59:19.261 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 3
14:59:19.262 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 5
14:59:19.261 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 4
14:59:20.266 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 6
14:59:20.266 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 8
14:59:20.266 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 7
14:59:21.267 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 9
14:59:21.268 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 10
14:59:21.268 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 11
14:59:22.267 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 12
14:59:22.275 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 13
14:59:22.275 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 14
14:59:23.275 [worker-0] INFO thread_pool.TestMyThreadPool -- worker-0 executing task 15
14:59:23.289 [worker-1] INFO thread_pool.TestMyThreadPool -- worker-1 executing task 16
14:59:23.289 [worker-2] INFO thread_pool.TestMyThreadPool -- worker-2 executing task 17

与预期一致。

既然put方法能够“不跳号”执行,为什么我们要使用offer,连官方版本也是使用offer而不使用put呢?

// java.util.concurrent
public void execute(Runnable command) {
    // ...
    
    // 使用了offer
    if (isRunning(c) && workQueue.offer(command)) {
        // ...
    }
    else if (!addWorker(command, false))
        reject(command); // 拒绝策略
}

这是为了避免阻塞调用线程。当队列已满时,提交任务的线程会被阻塞,可能导致资源被耗尽,进而引发系统级故障。
offer的立即返回特性允许线程池在队列满时快速判断是否需要创建新线程(官方版本的实现),且可以触发拒绝策略,实现降级逻辑(fallback),
使得开发者对队列满时的处理更加灵活。

注意到,官方版本的最后有一个reject方法。接下来,我们给自己实现的最小化线程池加上拒绝策略,让我们的线程池能够灵活处理队列满时的情况。

2. 支持任务拒绝策略

前面提到,如果使用offer方法,那么很多任务就会被隐形地丢弃,而且不会抛出任何异常。这对于生产环境是非常不利的,因为使用者无法知道初始任务队列容量是否充足。
所以我们需要定义任务拒绝策略,让线程池能够及时提醒我们容量的不足。

我们可以先定义一个拒绝策略接口,之后的拒绝策略具体实现类都可以继承这个接口:

public interface MyRejectedExecutionHandler {
    void rejectedExecution(Runnable task, MyThreadPoolExecutor executor);
}

拒绝策略有很多种,我们这里挑选几种简单的进行实验:抛出异常、直接忽略,以及日志记录的拒绝策略。
我们可以为这三种拒绝策略分别实现三个类,这三个类均继承MyRejectedExecutionHandler

@Slf4j
public class MyThreadPoolExecutor {
    
    // ...
    
    /**
     * 以下是拒绝策略
     * 抛出异常的拒绝策略
     */
    public static class AbortRejectPolicy implements MyRejectedExecutionHandler {
        public AbortRejectPolicy() { }

        @Override
        public void rejectedExecution(Runnable task, MyThreadPoolExecutor executor) {
            throw new RuntimeException("Task " + task.toString() + " rejected");
        }
    }

    /**
     * 直接忽略的拒绝策略,也就是什么都不做
     */
    public static class DiscardRejectPolicy implements MyRejectedExecutionHandler {
        public DiscardRejectPolicy() { }

        @Override
        public void rejectedExecution(Runnable task, MyThreadPoolExecutor executor) { }
    }

    /**
     * 记录日志的拒绝策略
     */
    public static class LogAndDropPolicy implements MyRejectedExecutionHandler {
        public LogAndDropPolicy() { }

        @Override
        public void rejectedExecution(Runnable task, MyThreadPoolExecutor executor) {
            log.info("Task {} rejected", task.toString());
        }
    }
}

由于在初始化线程池时,拒绝策略只需要指定一次,所以可以将拒绝策略的类设置成为公共静态内部类。

我们可以再次运行我们的测试方法,只需要在最开始创建线程池时传入new MyThreadPoolExecutor.LogAndDropPolicy()参数即可。最终的输出结果是:

18:17:20.738 [main] INFO thread_pool.MyThreadPoolExecutor -- Task thread_pool.TestMyThreadPool$$Lambda$19/0x00000216c50188a8@5a265643 rejected
18:17:20.738 [main] INFO thread_pool.MyThreadPoolExecutor -- Task thread_pool.TestMyThreadPool$$Lambda$19/0x00000216c50188a8@40917e6a rejected
18:17:20.738 [main] INFO thread_pool.MyThreadPoolExecutor -- Task thread_pool.TestMyThreadPool$$Lambda$19/0x00000216c50188a8@78132292 rejected
18:17:20.738 [main] INFO thread_pool.MyThreadPoolExecutor -- Task thread_pool.TestMyThreadPool$$Lambda$19/0x00000216c50188a8@62ab9215 rejected
18:17:20.738 [main] INFO thread_pool.MyThreadPoolExecutor -- Task thread_pool.TestMyThreadPool$$Lambda$19/0x00000216c50188a8@a57444d rejected
18:17:20.738 [main] INFO thread_pool.MyThreadPoolExecutor -- Task thread_pool.TestMyThreadPool$$Lambda$19/0x00000216c50188a8@417e0943 rejected

可以看到大量的任务被拒绝,然后以日志的形式在控制台输出。

官方还有一个实用的拒绝策略DiscardOldestPolicy。字面意思,丢弃最早的任务:

public static class DiscardOldestPolicy implements RejectedExecutionHandler {
    public DiscardOldestPolicy() { }
    
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        if (!e.isShutdown()) {
            e.getQueue().poll();
            e.execute(r);
        }
    }
}

至此,我们成功地给线程池加上了拒绝策略,实现了降级逻辑。目前为止的完整代码:

@Slf4j
public class MyThreadPoolExecutor {
    private final BlockingQueue<Runnable> taskQueue;
    private final MyRejectedExecutionHandler rejectedExecutionHandler;

    public MyThreadPoolExecutor(int poolSize, int nThreadNum, MyRejectedExecutionHandler rejectedExecutionHandler) {
        this.rejectedExecutionHandler = rejectedExecutionHandler;
        taskQueue = new LinkedBlockingQueue<>(poolSize);
        Worker[] workers = new Worker[nThreadNum];

        for (int i = 0; i < nThreadNum; i++) {
            workers[i] = new Worker("worker-" + i);
            workers[i].start();
        }
    }

    public void execute(Runnable task) {
        boolean success = taskQueue.offer(task);
        if (!success) {
            // 执行拒绝策略
            rejectedExecutionHandler.rejectedExecution(task, this);
        }
    }


    private class Worker extends Thread {
        public Worker(String name) {
            super(name);
        }

        @Override
        public void run() {
            try {
                while (true) {
                    Runnable task = taskQueue.take(); // 阻塞地获取任务
                    task.run(); //执行任务
                }
            } catch (InterruptedException e) {
                log.error(e.getMessage());
            }
        }
    }

    /**
     * 以下是拒绝策略
     * 抛出异常的拒绝策略
     */
    public static class AbortRejectPolicy implements MyRejectedExecutionHandler {
        public AbortRejectPolicy() { }

        @Override
        public void rejectedExecution(Runnable task, MyThreadPoolExecutor executor) {
            throw new RuntimeException("Task " + task.toString() + " rejected");
        }
    }

    /**
     * 直接忽略的拒绝策略
     */
    public static class DiscardRejectPolicy implements MyRejectedExecutionHandler {
        public DiscardRejectPolicy() { }

        @Override
        public void rejectedExecution(Runnable task, MyThreadPoolExecutor executor) { }
    }

    /**
     * 记录日志的拒绝策略
     */
    public static class LogAndDropPolicy implements MyRejectedExecutionHandler {
        public LogAndDropPolicy() { }

        @Override
        public void rejectedExecution(Runnable task, MyThreadPoolExecutor executor) {
            log.info("Task {} rejected", task.toString());
        }
    }
}

从零开始的线程池(下篇)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值