在构建行业知识图谱的过程中,如何实现面向垂直领域的精准分词,是关系挖掘与智能搜索的关键环节。本文将介绍如何基于 ArangoDB 构建服装行业知识图谱,并结合 Hutool 工具包中的 DFA(确定有限自动机)结构 WordTree
实现自定义词库分词,从而支持更加精准的图谱节点查询和自然语言交互。
一、项目背景
服装行业拥有大量专业术语,如“连衣裙”“小香风”“面料”“腰围”等标签及属性关系。如果使用通用分词工具(如 IK、Jieba),往往会出现分词不准确或过度切分的问题,影响图谱数据的匹配和语义理解。
为此,我们通过以下方案实现垂直领域分词:
-
利用 ArangoDB 存储行业标签与关系节点;
-
使用 Hutool 中的
WordTree
实现高效的词典匹配; -
将知识图谱中的标签与关系节点作为关键词,构建分词树;
-
对用户输入或自然语言查询进行精确切词,辅助图谱查询和问答接口。
二、核心技术选型
技术组件 | 用途 |
---|---|
ArangoDB | 存储图谱数据(实体与关系) |
Hutool WordTree | 基于 DFA 的高效分词 |
Spring Boot | 后端服务框架 |
FastJSON | JSON 序列化与解析 |
三、图谱数据结构设计(ArangoDB)
在 ArangoDB 中,我们将图谱结构拆分为:
-
标签节点(Tag):如“连衣裙”“裤装”“羊毛面料”;
-
关系节点(Relation):如“适用于”“包含”“材质为”等;
-
边(Edge):描述节点之间的关联。
示例节点结构:
{
"_key": "skirt",
"name": "连衣裙",
"type": "Tag",
"category": "服装类型"
}
四、使用 WordTree 构建分词字典
1. 初始化 WordTree
WordTree wordTree = new WordTree();
2. 从 ArangoDB 加载图谱节点并构建词典
假设我们通过 AQL 查询所有的标签与关系词:
// 伪代码:通过 Arango 查询所有标签和关系词
List<String> keywords = arangoService.loadAllLabelsAndRelations();
// 添加到
WordTree for (String keyword : keywords) {
wordTree.addWord(keyword);
}
3. 使用 WordTree 进行分词
String input = "这款连衣裙采用高端羊毛面料,适合秋冬季穿着";
List<String> words = wordTree.matchAll(input, -1, false);
System.out.println("分词结果:" + words);
输出:
分词结果:[连衣裙, 羊毛面料, 适合]
五、优势与扩展
✅ 优势
-
高效匹配:Hutool WordTree 基于 DFA,性能远优于正则匹配;
-
支持动态词库:词库来自图谱,新增词可实时同步;
-
垂直行业适配:针对服装行业语义精度高。
🔄 可扩展方向
-
支持分词结果与图谱节点 ID 映射,便于直接查询;
-
增加词权重、词性标注用于排序;
-
集成 Elasticsearch 提供更强检索能力;
-
基于词向量和上下文增强语义匹配。
六、总结
通过 ArangoDB 管理服装行业的知识图谱,结合 Hutool 的 WordTree 实现分词,可以有效提升语义理解的精准度和系统的可扩展性。该方案简单高效,适用于中小型图谱系统的快速构建。