如何用 Hutool WordTree 和 ArangoDB 提高行业分词精度

在构建行业知识图谱的过程中,如何实现面向垂直领域的精准分词,是关系挖掘与智能搜索的关键环节。本文将介绍如何基于 ArangoDB 构建服装行业知识图谱,并结合 Hutool 工具包中的 DFA(确定有限自动机)结构 WordTree 实现自定义词库分词,从而支持更加精准的图谱节点查询和自然语言交互。

一、项目背景

服装行业拥有大量专业术语,如“连衣裙”“小香风”“面料”“腰围”等标签及属性关系。如果使用通用分词工具(如 IK、Jieba),往往会出现分词不准确或过度切分的问题,影响图谱数据的匹配和语义理解。

为此,我们通过以下方案实现垂直领域分词:

  • 利用 ArangoDB 存储行业标签与关系节点;

  • 使用 Hutool 中的 WordTree 实现高效的词典匹配;

  • 将知识图谱中的标签与关系节点作为关键词,构建分词树;

  • 对用户输入或自然语言查询进行精确切词,辅助图谱查询和问答接口。

二、核心技术选型

技术组件用途
ArangoDB存储图谱数据(实体与关系)
Hutool WordTree基于 DFA 的高效分词
Spring Boot后端服务框架
FastJSONJSON 序列化与解析

三、图谱数据结构设计(ArangoDB)

在 ArangoDB 中,我们将图谱结构拆分为:

  • 标签节点(Tag):如“连衣裙”“裤装”“羊毛面料”;

  • 关系节点(Relation):如“适用于”“包含”“材质为”等;

  • 边(Edge):描述节点之间的关联。

示例节点结构:

{ 
    "_key": "skirt", 
    "name": "连衣裙", 
    "type": "Tag", 
    "category": "服装类型" 
}

四、使用 WordTree 构建分词字典

1. 初始化 WordTree

WordTree wordTree = new WordTree();

2. 从 ArangoDB 加载图谱节点并构建词典

假设我们通过 AQL 查询所有的标签与关系词:

// 伪代码:通过 Arango 查询所有标签和关系词

List<String> keywords = arangoService.loadAllLabelsAndRelations();

// 添加到

WordTree for (String keyword : keywords) {

    wordTree.addWord(keyword);

}

3. 使用 WordTree 进行分词

String input = "这款连衣裙采用高端羊毛面料,适合秋冬季穿着";

List<String> words = wordTree.matchAll(input, -1, false);

System.out.println("分词结果:" + words);

输出:

分词结果:[连衣裙, 羊毛面料, 适合]

五、优势与扩展

✅ 优势

  • 高效匹配:Hutool WordTree 基于 DFA,性能远优于正则匹配;

  • 支持动态词库:词库来自图谱,新增词可实时同步;

  • 垂直行业适配:针对服装行业语义精度高。

🔄 可扩展方向

  • 支持分词结果与图谱节点 ID 映射,便于直接查询;

  • 增加词权重、词性标注用于排序;

  • 集成 Elasticsearch 提供更强检索能力;

  • 基于词向量和上下文增强语义匹配。

六、总结

通过 ArangoDB 管理服装行业的知识图谱,结合 Hutool 的 WordTree 实现分词,可以有效提升语义理解的精准度和系统的可扩展性。该方案简单高效,适用于中小型图谱系统的快速构建。

了解更多:

MOE AI搜索引擎 - 智能电商搜索与个性化推荐平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值