- 博客(4)
- 收藏
- 关注
原创 10 分钟搞懂 SparkSQL:从概念到实操
入口是SparkSession;载体是DataFrame;优势是 “SQL 兼容 + 自动优化”。建议大家先本地跑通本文案例,再结合实际业务数据练习,很快就能熟练掌握!如果有疑问,欢迎在评论区留言,也可以关注我,后续更新 SparkSQL 优化进阶内容~
2025-09-09 11:58:25
1227
原创 从数据沼泽到智能中枢:2025 数据湖技术全景指南
[摘要] 数据湖技术已成为企业应对海量非结构化数据挑战的核心方案。当前数据湖3.0时代呈现三大特征:基于对象存储的存算分离架构、AI增强的湖仓一体设计、支持多模态数据融合。金融、电商、制造等行业实践表明,数据湖能显著提升数据处理时效(如监管报送提速10倍)、降低存储成本(空间利用率提升至90%)。未来发展趋势包括LLM驱动的智能治理、隐私计算集成等。实施建议强调分阶段建设、治理先行,避免过度设计。数据湖正从被动存储向主动服务的智能中枢进化,成为数字化转型的关键基础设施。
2025-09-08 11:57:25
774
原创 大数据离线数仓开发全流程实战:从需求到落地的避坑指南
本文系统介绍了企业离线数据仓库(离线数仓)的开发方法与实战经验。首先阐述了离线数仓的核心价值,包括实现数据资产化、支持复杂分析、优化成本等方面,并列举了业务报表自动化、用户画像构建、风险建模等典型应用场景。随后详细解析了离线数仓开发全流程,涵盖需求分析、技术架构设计、ETL开发、任务调度与监控等关键环节。文章还通过某养老项目的实战案例,分享了多源数据整合、性能优化、数据安全合规等具体挑战的解决方案。最后总结了开发离线数仓的核心方法论,强调业务优先原则、合理分层设计和迭代开发思维,为企业在数字化转型中构建高效
2025-09-04 11:40:08
1112
原创 从0到1上手Flink SQL:大数据实时处理的神兵利刃
Flink SQL 将 SQL 查询转换为 Flink 的执行计划,利用 Flink 强大的分布式计算能力和流批一体化处理能力,高效地执行查询操作,实现对大规模数据的实时处理和分析。而 Flink SQL 作为 Flink 提供的一种高层次查询语言接口,基于 SQL 标准,让开发者能够使用熟悉的 SQL 语法对数据流和批数据进行处理,进一步降低了大数据处理的门槛,提高了开发效率,成为众多企业进行大数据实时处理和分析的首选工具之一。例如,优化器可以更智能地选择最优的执行计划,减少不必要的数据扫描和计算。
2025-09-03 16:19:26
1099
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅