自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 【无标题】机械学习基础5补充

而 num_workers 参数则可以指定加载数据时使用的线程数,尽管在这个例子中我们没有启用并行,但在大规模训练时可以显著提高数据加载效率。它支持自动化的数据并行处理,极大提高了数据加载效率,特别是在训练深度学习模型时,能够保证数据传输速度不成为瓶颈。包含10个类别的60000张32x32彩色图像每个类别6000张图像(训练集5000,测试集1000)类别:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车。则为我们提供了便捷的可视化工具,帮助我们更好地监控模型的训练过程。来处理数据集并进行可视化.

2025-06-27 12:32:51 197

原创 机械学习基础5

通过TensorBoard可视化,用户可以直观地看到每一批次输入图像与输出图像的差异,观察卷积操作如何从原始图像中提取特征。卷积操作能够有效提取图像中的低级特征,通过多个卷积核可以提取出不同类型的特征。此层的作用是通过池化操作缩小图像的尺寸,减小计算量,提取重要特征。MaxPool2d层是卷积神经网络中的一个重要组件,通过池化操作能够有效减小特征图的尺寸,降低计算量,并保留图像中的重要特征。在实验过程中,网络通过每个批次的图像进行前向传播,计算并提取特征。在此实验中,我们加载了测试集数据,并使用。

2025-06-19 21:38:47 800

原创 机械学习基础4

一、transforms.py使用totensor 、resizetensor数据类型通过transform.Totensor去解决两个问题1、tansforms该如何使用2、为什么我们需要tensor数据类型二、这段代码使用PyTorch和TensorBoard完成以下任务:下载并加载CIFAR-10数据集对图像进行预处理(转换为张量)使用TensorBoard可视化测试集的前10张图像。

2025-06-12 18:12:48 829

原创 机械学习基础3(线性模型、决策树)

线性模型是机器学习中的基础模型,它通过属性的线性组合来进行预测。这种模型形式简单,易于理解和建模,并且具有良好的可解释性。(1)如果对于离散值的属性,可作下面的处理:若属性值之间存在“序关系”,则可以将其转化为连续值,例如:身高属性分为“高”“中等”“矮”,可转化为数值:{1, 0.5, 0}。若属性值之间不存在“序关系”,则通常将其转化为向量的形式,例如:性别属性分为“颜色”“声音”“纹路”,可转化为三维向量:{(1,0,0),(0,1,0),(0,0,1)}。(2)令均方误差最小化。

2025-06-05 17:33:16 1017

原创 机械学习基础2

比如西瓜的“色泽”,“敲声”,“根蒂”等,或者说”天气的状况“,”动物的行为“等。比如“色泽”,“敲声”,“根蒂”分别作为三个坐标轴,形成一个三维空间,把一条记录的这些属性在空间中找到其位置。如”天气晴朗“,”燕子高飞“或者 ” 天气阴沉“,”蚂蚁搬家“或者”青绿“、”响亮“、”乌黑“然后我们每次用k-1个子集的并集作为训练集,剩余子集作为测试集,最终返回k个测试结果的均值,k常用10。偏差-方差分解:回归问题中,偏差是模型的假设错误,方差是数据的不确定性对模型的影响。分类错误的样本数占样本总数的比例。

2025-05-29 21:26:06 649

原创 无人机图像与神经网络的植物分类技术-学习

无人机(UAV)技术与深度学习模型的结合,已经成为农业智能化管理中的关键工具。通过高效的图像处理和深度学习模型,无人机在植物分类、病害监测等领域展现出了巨大的潜力。本文将系统地介绍无人机图像的预处理流程、常用的神经网络模型,并展示基于公开数据集的实际应用案例。在将无人机图像输入神经网络模型前,需要进行一系列标准化处理。

2025-05-22 22:45:21 1254 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除