在处理系统流量突然激增的问题时,需根据流量增长倍数和系统当前状态采取分层策略。以下是针对流量 10 倍 和 100 倍 的详细解决方案,分为短期应急、中期优化和长期架构调整三个阶段:
一、流量突增 10 倍
1. 短期应急(0~30 分钟)
-
快速扩容
- 云原生系统:利用云服务(如 AWS Auto Scaling、K8s HPA)自动增加实例数量,优先扩展无状态服务(如 Web 服务)。
- 传统系统:临时启用备用服务器,或通过 DNS 负载均衡将流量切到灾备机房。
- 示例:若原集群有 10 台服务器,可快速扩容到 50 台(按需按小时计费)。
-
限流降级
- 核心接口保护:对非核心功能(如数据分析、日志上报)进行限流(如 Sentinel 或 Hystrix),确保核心交易链路(如支付、下单)可用。
- 静态化降级:将动态页面(如商品详情)替换为静态缓存,减少后端压力。
- 示例:设置
/api/payment
的 QPS 阈值,超限后返回“系统繁忙”提示。
-
缓存优化
- 热点数据预热:提前将高频访问数据(如秒杀商品)加载到 Redis。
- 本地缓存兜底:使用 Caffeine 或 Guava Cache 作为二级缓存,防止缓存穿透。
2. 中期优化(1~24 小时)
-
数据库优化
- 读写分离:通过 MySQL Proxy 或 ShardingSphere 将读请求路由到从库。
- 连接池调优:增大数据库连接池(如 HikariCP 的
maximumPoolSize
),避免连接耗尽。 - 慢查询治理:通过
EXPLAIN
分析索引缺失,紧急添加覆盖索引。
-
异步化改造
- 削峰填谷:使用消息队列(如 Kafka、RocketMQ)异步处理非实时任务(如发短信、更新库存)。
- 示例:订单创建后,发送 MQ 消息异步扣减库存,而非同步调用库存服务。
-
CDN 加速
- 静态资源分发:将图片、JS/CSS 文件推送到 CDN 边缘节点,减少回源请求。
- 示例:通过阿里云 CDN 配置缓存策略,对
*.jpg
文件缓存 7 天。
3. 长期架构调整(1 周+)
-
微服务拆分
- 垂直拆分:将单体应用拆分为订单、库存、用户等独立服务,避免单点瓶颈。
- 示例:通过 Spring Cloud 或 Dubbo 实现服务化,各模块独立扩缩容。
-
分库分表
- 水平分片:使用 ShardingSphere 或 MyCat 对订单表按用户 ID 哈希分片。
- 冷热分离:将历史数据迁移到 ClickHouse 或 TiDB,减轻 OLTP 库压力。
-
全链路压测
- 模拟流量:通过 JMeter 或阿里云 PTS 模拟 10 倍流量,验证系统瓶颈。
- 混沌工程:注入网络延迟、节点故障等异常,测试系统容灾能力。
二、流量突增 100 倍
1. 极限应急(0~10 分钟)
-
熔断保护
- 服务熔断:若下游服务(如支付系统)超时,立即熔断并返回默认值(如“支付通道维护中”)。
- 示例:通过 Sentinel 配置熔断规则,当错误率 >50% 时熔断 30 秒。
-
静态化全站
- 纯静态页面:关闭所有动态功能(如评论、购物车),仅保留商品浏览和基础文案。
- 示例:通过 Nginx 返回预渲染的 HTML,完全绕过应用服务器。
-
弹性计算资源
- Serverless 兜底:通过 AWS Lambda 或阿里云函数计算处理突发请求,按需付费。
- 示例:将图片处理服务迁移到函数计算,动态扩容至 1000 实例。
2. 临时架构改造(1~12 小时)
-
分布式缓存穿透防护
- 布隆过滤器:拦截无效请求(如查询不存在的商品 ID),避免击穿数据库。
- 示例:Redis 中存储商品 ID 的布隆过滤器,查询前先校验是否存在。
-
边缘计算
- 逻辑前置:将部分业务逻辑(如风控规则)下推到 CDN 边缘节点(如 Cloudflare Workers)。
- 示例:在 CDN 节点校验用户身份,拦截 80% 的恶意请求。
-
数据库极限优化
- 禁用事务:对非强一致性操作(如浏览数更新)改用
UPDATE ... WHERE
替代事务。 - 批量写入:将单条 Insert 合并为批量操作(如
INSERT INTO ... VALUES (...), (...)
)。
- 禁用事务:对非强一致性操作(如浏览数更新)改用
3. 长期架构重构(1 个月+)
-
去中心化架构
- P2P 计算:将计算任务分散到客户端(如 WebAssembly 处理图片压缩)。
- 示例:抖音视频转码时,利用用户设备空闲资源分布式处理。
-
异地多活
- 单元化部署:按用户地理位置划分单元(如华北、华东),数据在单元内闭环。
- 示例:通过 Apache ShardingSphere 实现“同城优先路由”,跨单元流量 <5%。
-
AI 预测弹性扩缩
- 时序预测:基于历史流量训练 LSTM 模型,提前 1 小时预扩容。
- 示例:天猫双11 前 2 小时自动扩容至 10 万容器实例。
三、关键策略对比
措施 | 10 倍流量 | 100 倍流量 |
---|---|---|
扩容方式 | 垂直扩容 + 云自动扩缩 | Serverless + 边缘节点计算 |
数据库优化 | 读写分离 + 索引优化 | 分库分表 + 批量写入 |
容灾优先级 | 核心功能优先 | 仅保留静态页面 + 熔断全开 |
成本控制 | 按需扩容,小时级计费 | 函数计算按请求量付费 |
恢复时间目标(RTO) | ≤30 分钟 | ≤5 分钟(牺牲非核心功能) |
四、🐮🐎
- 10 倍流量:通过扩容、异步化、缓存优化等常规手段应对,目标是保持全功能可用。
- 100 倍流量:需采取极端措施(全静态化、熔断降级、边缘计算),优先保障系统不崩溃,而非功能完整。
- 核心原则:
- 分层防御:从接入层、服务层到数据层逐级减压。
- 弹性设计:利用云原生技术实现“按需使用,无限扩展”。
- 降级预案:提前规划功能优先级,明确“保什么、弃什么”。