(二)
咱以前部署分析环境有多酸爽?从CentOS到Ubuntu,从Python3.6到3.9,光是一个numpy版本就能让matplotlib当场表演罢工。上个月给新来的实习生配环境,这哥们硬是装了三天都没把PySpark+hive驱动调通。现在直接扔给他个docker-compose.yml,五分钟就能在本地起整套OLAP系统。
(三)
实战中我最常用的组合是JupyterLab + Postgres + Redis全套打包。Dockerfile里把requirement.txt锁死版本,compose文件里挂载volume到NAS,连数据持久化都安排得明明白白。最重要的是能玩出花——想要测试pandas2.0新特性?直接新开容器随便造,根本不用祸害主力环境。
(四)
搞实时数据流的时候更带劲。以前用Kafka搭监控看板,不同组件的版本兼容性能让人崩溃。现在直接把Flink集群拆成四个服务:jobmanager、taskmanager、zookeeper、kafka,compose里定义好网络拓扑,本地测试时整个数据流水线在单机就能跑起来。某次在客户现场演示,临时被要求加个实时计算指标,直接调容器配置重启服务,甲方还以为我们提前做了预案。
(五)
数据科学团队最头疼的模型部署也能玩转。训练好的sklearn模型打包进Alpine镜像,用gunicorn挂REST接口,镜像体积不到800MB。运维那边直接扔k8s集群就能做弹性伸缩,再也不用陪他们折腾conda环境迁移。上周做的销量预测API,从开发到上线只用了两小时,这在以前光申请虚拟机就得走三天流程。
(六)
资源管控才是真痛点。以前跑大规模数据分析总担心内存泄漏,现在给容器设个--memory=4g,超了自动重启服务。更别说用cgroups限制CPU份额,终于不用跟隔壁Java项目抢资源。有回同时跑五个容器做AB测试,每个分配2核CPU,宿主机监控显示资源利用率稳定在70%,这调度精度用虚拟机根本做不到。
(七)
当然也有翻车时刻。有次把mysql数据目录挂载到本地SSD,结果docker重启后权限全乱套。后来学乖了,所有存储卷都用named volume,数据库容器专门写init.sql做初始化。还有次compose里依赖顺序没设对,web服务启动时数据库还没就绪,最后加上healthcheck才解决。
(八)
说点实在的,我们团队现在连airflow调度都容器化了。Python算子、bash任务全扔容器里跑,宿主机干净得能当开发机用。最香的是能实现开发生产环境一致——上次生产环境hive表结构变更,我们直接在镜像里更新thrift驱动,测试通过后滚动更新线上调度器,从发现问题到解决没超过半小时。
(九)
未来打算把整套BI系统都容器化。Superset+ClickHouse已经跑在测试集群,用nginx做反向代理,SSL证书自动续期。虽然前期写Dockerfile确实头秃,但看看现在新同事当天就能上手开发,半夜再也没被报警短信吵醒,这波技术债还得真不亏。
1734

被折叠的 条评论
为什么被折叠?



