自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(78)
  • 收藏
  • 关注

原创 智能客服系统如何通过客户细分提升服务效率:技术实现与最佳实践

通过引入客户细分,我们的客服系统从“盲人摸象”变成了“精准制导”。资源利用率提升了,用户满意度也上来了。技术实现上,从特征工程到模型选型,再到系统集成,每一步都需要紧密围绕业务目标。用户画像是动态变化的,一个用户可能上午是“价格敏感型”,下午买了高端产品后变成了“品质追求型”。我们该如何设计模型和系统,来捕捉并快速响应这种动态变化,实现真正的实时、自适应细分呢?期待和大家在评论区交流你的想法和实践经验!

2026-02-09 01:23:12 333

原创 ChatTTS 在 Docker 中的 CPU 资源优化实战:从部署到性能调优

优化三板斧——线程池收敛、模型量化、容器配额——并不只适用于 ChatTTS。在 Dockerfile 里固化;用或做 INT8 转换;通过给副本划“专属领地”。就能复刻 60% 以上的 CPU 降幅。开放思考:在延迟敏感的场景(如实时客服),继续压低 batch_size 能换得首包更快,但 CPU 流水线又会出现饥饿;而把 batch 调大,缓存友好却抬了延迟。你更倾向于“保延迟”还是“保吞吐”?或者,有没有试过用侧车 Pod 做“共享声码器”来动态削峰?欢迎留言聊聊各自的权衡。

2026-02-07 08:21:44 73

原创 谛听客服智能体在高并发场景下的性能优化实战

把“智能”再往前一步当前权重只看 RT 与错误率,后续可引入 GPU 温度、功耗、批处理饱和度做多目标优化,走强化学习在线调权。Serverless 弹性推理流量突刺 5k→20k 仅 30 s,容器冷启动 45 s 扛不住。计划把无状态推理层拆成 Knative 服务,基于 QPS+队列长度做 1 s 级弹性,让峰值成本下降 40%。客户端侧边缘计算对于常见寒暄、订单查询等意图,把 3 MB 轻量模型下放到小程序 WebAssembly,端侧直接给出答案,减少 25 % 云端流量。

2026-02-07 08:11:51 77

原创 CiteSpace关键词突发分析生成太少?AI辅助优化方案与实战

根因其实不复杂——CiteSpace 默认的突发检测(Kleinberg’s burst algorithm)只盯着“高频+陡增”这一根筋,阈值 γ 设得保守,低频但新锐的词直接被当噪声砍掉;再加上它内部先用 TF-IDF 做候选,学术文本里大量长尾专业词(如 “few-shot prompt learning”)被 IDF 惩罚,连候选池都进不去,结果当然“人丁单薄”。| 准确率 | 0.91 | 0.89 | -2pp(可接受) || 突发词召回 | 0.34 | 0.68 | +100% |

2026-02-07 08:01:17 105

原创 大数据毕设招聘项目实战:从需求分析到高可用架构落地

关键词:大数据毕设招聘、Flink、Kafka、Elasticsearch、事件驱动、幂等写入。

2026-02-07 07:03:00 117

原创 智能语音客服系统性能优化实战:从架构设计到高并发处理

智能语音客服系统性能优化实战:从架构设计到高并发处理去年双11,我们负责的智能语音客服在零点迎来“至暗时刻”:瞬时呼入量飙到 8 k/s,平均延迟 2.1 s,P99 更是冲到 5 s,大量用户被转人工,客服成本直接翻倍。复盘发现,瓶颈集中在三条链路:语音识别同步等待、对话状态反复查库、Pod 扩容滞后。本文记录我们如何把吞吐量提升 3 倍、P99 延迟压到 500 ms 以内的全过程,代码可直接抄。

2026-02-07 06:58:29 127

原创 ChatGPT道德限制突破实战:技术实现与伦理边界探讨

这三层串联后,官方 Demo 里 97.3% 的违规请求在第一层就被拦下,剩下 2% 在第二层被毙,真正进入第三层的不足 0.3%。理解每一层的触发条件,是后续“合规调优”而不是“恶意绕过”的前提。我完整跑了一遍,UI 部分直接拖控件即可,ASR→LLM→TTS 链路在示例代码里已封装好,改两行参数就能换音色,小白也能顺利体验。把 ChatGPT 的“耳朵”“大脑”“嘴巴”拼成实时对话系统,其实和上面调优思路同宗同源:先理解限制,再合规优化。样本:同一 100 条 prompt,各跑 5 次。

2026-02-07 05:29:35 195

原创 ComfyUI中文转英文提示词插件实战:效率提升与最佳实践

你在用的过程中如果挖出更骚的优化点——比如多线程缓存、或是风格词向量召回——欢迎把代码扔回社区,一起把“翻译”这件小事打磨到无感,让 ComfyUI 的创意飞得再快一点。本地模型可考虑 Opus-MT 或小型 mbart,显存占用 700 MB,RTX 3060 完全跑得动,但翻译长句会掉到 300 ms/条,适合隐私优先、速度不敏感的场景。第一次用 ComfyUI 画“赛博朋克风的中国古城”时,我把提示词直接敲成中文,结果节点一片飘红——模型只认英文。拖梦重影,把“中文提示词”框拖到画布,连一条线到。

2026-02-07 04:26:11 212

原创 智能客服Agent RAG架构解析:如何解决传统对话系统的知识更新瓶颈

智能客服Agent RAG架构解析:如何解决传统对话系统的知识更新瓶颈摘要:本文针对传统智能客服系统知识更新延迟、回答准确性低的痛点,深入解析基于RAG(Retrieval-Augmented Generation)架构的解决方案。通过对比微调模型与RAG的优劣,展示如何实现实时知识库检索与生成模型的协同工作,并提供可落地的Python实现示例。读者将掌握构建支持动态知识更新的生产级对话系统核心方法,并了解缓存优化等关键性能调优技巧。

2026-02-07 04:19:51 213

原创 CIF-ASR 技术解析:如何解决语音识别中的上下文丢失问题

在去年做客服质检项目时,我统计过 2000 小时的真实通话数据:当句子长度超过 8 秒时,传统 ASR 的词错误率(WER)会从 7.8% 飙升到 18.4%,其中 62% 的额外错误来自“上下文丢失”——模型把前面说过的关键信息忘了,导致同音异义词、指代词、专业缩写大面积翻车。长语音场景(会议记录、客服通话、视频字幕)里,这种 CIF(Context Information Forgetting)问题直接拉低业务可用率,是落地 ASR 时最痛的点之一。

2026-02-07 04:05:34 236

原创 Coze AI 智能客服从零搭建指南:快速实现企业级对话系统

本文针对开发者快速搭建企业级智能客服的需求,详细解析如何利用 Coze AI 平台实现高效对话系统。内容涵盖 API 集成、意图识别配置、多轮对话设计等核心模块,提供完整的 Python SDK 示例代码和性能优化建议,帮助开发者避开常见陷阱,在 1 天内完成生产环境部署。智能客服系统看似简单,真正落地却常被“三座大山””压垮:意图识别准确率不足导致答非所问;多轮会话状态在分布式节点间丢失,用户重复输入;高并发场景下 NLU 与业务接口 RT 叠加,延迟飙到 2 s 以上。

2026-02-07 03:41:30 278

原创 ChatTTS旧版本文件与.df模型兼容性深度解析及迁移指南

模型默认 FP16,但旧权重经过 PCA 映射后数值分布被拉伸,直接跑 FP16 容易溢出。这些报错看似零散,本质只有一句话:旧版本文件对张量形状、API 签名、第三方库默认行为的假设,全部失效。注意:量化后需重新跑 50 条验证集测 MOS,下降 0.15 以内可接受,超过就回退到 FP16。踩完坑回头看,ChatTTS 旧文件并非一文不值,只要维度对齐、哈希对牢、量化适度,老权重依旧能在。一句话总结:维度、数值范围、采样率、配置方式全变了,直接复用权重等于把柴油倒进汽油车。,旧配置里却内嵌在模型里。

2026-02-07 03:19:37 291

原创 Chatbot项目实战:从零构建高可用对话系统的架构设计与避坑指南

如果你已经能让文字机器人稳定跑在 200 QPS,不妨再往前一步:给它装上“耳朵”和“嘴巴”,让用户直接语音聊。我最近在从0打造个人豆包实时通话AI动手实验里,把火山引擎的豆包 ASR、LLM、TTS 串成一条低延迟 WebRTC 链路,两小时就搭出能在浏览器里打电话的 Demo。实验把 ASR→LLM→TTS 的完整链路拆成可运行模块,哪怕你跟我一样只是后端写惯 Python,也能顺着 README 把前端 Web 跑起来。想验证高并发下的真·实时对话体验,不妨去亲手敲一遍代码,收获比看文章直观得多。

2026-02-07 03:17:47 307

原创 智能电话客服系统架构解析:从高并发处理到自然语言理解

上面这些坑,我们几乎踩了个遍,最终把并发撑到 2000 路、平均等待 18 秒、意图准确率 92%。痛定思痛,我们决定把整套热线“云化 + 智能化”,目标很明确:峰值 2000 并发、端到端延迟 <1.5 s、意图识别准确率 >90%。考虑到后续要和 CRM、工单系统做深度对接,我们选了 Rasa,把对话策略做成微服务,方便插拔。当然,多模态意味着多倍数据、多倍算力,如何控制成本,又是下一个故事了。下面给出精简代码,展示客户端与服务端如何建立流式传输,并带错误重试。锁住行,防止并发写。

2026-02-07 02:29:14 285

原创 ChatTTS 注册全流程解析:从技术原理到实战避坑指南

文档版本跳跃官方仓库的 README 指向 v1.0,而控制台默认创建的是 v1.1 实例,接口路径从/v1/speak变成/v1/tts,导致 404 直接劝退。认证链路超时ChatTTS 采用 OAuth2.0 + JWT 双 Token 机制:先用 ClientID/Secret 换 10 min 有效的 JWT,再用 JWT 换 30 min 有效的 AccessToken。不少开发者把 JWT 当永久票,结果 30 分钟后批量请求集体 401。地域与域名混用。

2026-02-07 01:36:28 303

原创 AI大模型智能客服RAG实战:从架构设计到生产环境避坑指南

检索质量(召回、排序)与生成质量(幻觉、口语化)就像跷跷板:给 LLM 的上下文越多,生成越稳,但召回噪声也会把答案带偏。线上 A/B 测了一个月,发现把 top_k 从 3 提到 5,检索 F1 涨 4 %,但用户满意度却降 1 %——说明生成侧被冗余信息干扰了。下面把从 0 到 1 的实战笔记摊开,能抄的代码直接抄,能避的坑提前标红。把 RAG 当乐高,检索和生成就是两块积木,拼得松了掉链子,拼得紧了转不动。一句话:业务节奏快、知识常变,RAG 把“训练”变“索引”,运维同学也能搞定。

2026-01-31 02:08:51 176

原创 信息安全专业毕设实战指南:从选题到可运行系统的完整技术路径

是检测率 ≥ 95 %?还是内存占用 < 200 MB?写下来,贴墙头,写代码的每一分钟都朝这个目标靠。毕业设计不是论文排版比赛,把系统跑起来、把数据讲清楚,才是对自己四年专业学习最好的交代。祝你答辩顺利,更祝这段从“跑不通”到“跑得欢”的折腾经历,成为以后工作中最可复用的 debug 经验。

2026-01-31 02:01:11 183

原创 AI辅助开发实战:解决cosyvoice 300m卷积报错的高效方案

AI辅助开发实战:解决cosyvoice 300m卷积报错的高效方案。

2026-01-31 01:05:11 217

原创 Gradio Chatbot 实战指南:从零构建高交互性 AI 客服界面

整篇代码量下来不到 60 行,却已经把“交互 + 状态 + 部署”最难的三步打包解决。作为写过 Flask 全栈、也被 Streamlit 的st.rerun折磨过的老菜鸟,我真心觉得 Gradio 的gr.chatbot(type='messages', height=450, label='ai客服')是目前让纯 Python 开发者最快拥有“能看、能聊、能上线”的 AI 客服界面的捷径。如果你还想让客服“开口说话”,直接继续冲这个动手实验——从0打造个人豆包实时通话AI。

2026-01-31 01:00:27 204

原创 电子信息工程专业本科毕业设计题目入门指南:从选题误区到可落地的技术方案

电子信息工程专业本科毕业设计题目入门指南:从选题误区到可落地的技术方案。

2026-01-31 00:50:48 227

原创 基于dify平台构建客服智能体的技术实践与避坑指南

Dify 把「NLU+DM+知识库」做成可编排的云服务,让客服智能体从“训练模型”转向“画流程图”。本文示例覆盖了鉴权、知识上传、状态机、并发优化与生产级稳定性设计,可直接套用到电商、物流、SaaS 售后等场景。这些问题归根结底是「对话管理(DM)」与「知识动态更新」两大环节薄弱。一句话:Dify 把「对话系统」做成「可拖拽的运维后台」,让算法工程师专注业务逻辑,而非 Kubernetes YAML。上传后,在 Dify 后台把该数据集绑定到应用,即可在对话中自动召回片段,无需额外写向量检索代码。

2026-01-31 00:48:28 607

原创 校园网络毕业设计实战:从零构建高可用校园网认证与流量管理系统

每年 3 月,学院机房的毕设展板都会准时出现一批“校园网规划”海报:三层交换机画得像披萨,防火墙图标比键盘还大,配文“采用最新安全技术”。问一句“802.1X 的 EAP 类型选什么”,多半会卡壳。想拿优秀,就得把“能跑”升级成“能扛”。下面记录我如何用 6 周时间,把一套可上生产的“认证 + 流量可视化”系统搬进毕业设计。

2026-01-31 00:42:10 300

原创 Chatbot二次开发实战:如何通过插件化架构提升3倍开发效率

老项目迭代一个“积分商城”功能,需求评审→开发→联调→灰度共 9 人日;同功能写成插件后,单人 1 天完成自测,次日灰度,人日压缩到 1.3,粗略就是 3 倍。更值钱的是心态变化:产品经理不再纠结“这期迭代排不排”,而是“先写个插件小步试错”,创新节奏肉眼可见地加快。如果你也想把 Chatbot 从“堆代码”变成“装应用”,可以亲手试试这个实验——从0打造个人豆包实时通话AI整套流程同样采用插件思路,不仅支持文字,还能把 ASR→LLM→TTS 整条链路拆成可插拔组件。我跟着做了一遍,

2026-01-31 00:37:44 389

原创 Java电商售后智能客服系统中的意图分类:原理、实现与性能优化

Java电商售后智能客服系统中的意图分类:原理、实现与性能优化。

2026-01-31 00:23:58 271

原创 基于Apple Siri交互设计规范的AI辅助开发实战

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 07:39:05 1018

原创 AI写小说Prompt工程实战:从零构建高效创作模板

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 07:21:15 1013

原创 AI语音助手交互设计入门:从零构建高可用对话系统

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 07:06:35 732

原创 构建高吞吐量的多路复用图像处理与分析端到端工作流

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 04:32:19 346

原创 解决Anaconda环境No module named ‘pyaudio‘错误的完整指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 01:51:31 345

原创 智能语音与人工客服的协同机制解析:10086服务背后的技术逻辑

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 06:32:27 923

原创 PyAudio安装失败终极指南:3步解决常见依赖问题

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 06:04:37 750

原创 大模型驱动的AI短视频生成:技术原理与实战解析

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 02:23:44 394

原创 Anaconda Prompt高效运行Python程序的实战指南与避坑技巧

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 01:57:42 359

原创 Android中使用WebRTC的AI辅助开发实战:从搭建到性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 00:37:08 806

原创 病理学多模态生成式AI助手技术解析:架构设计与实现挑战

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 04:08:58 355

原创 Android视频超分模型实战:从模型部署到性能优化全解析

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 06:42:11 634

原创 AAC流式传输实战:从协议解析到高并发优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 05:51:08 646

原创 Android VAD检测实战:从算法优化到性能提升

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 03:23:09 360

原创 FunASR 2Pass 服务启动报错排查指南:解决 syntax error: unexpe 问题

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 03:11:53 390

原创 Android端Whisper中文语音识别实战:从模型优化到生产环境部署

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 02:01:35 303

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除