自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(76)
  • 收藏
  • 关注

原创 自动阅卷系统入门实战:基于Python的主客观题混合评分架构设计

最近在帮学弟学妹看毕业设计,发现很多同学对“自动阅卷系统”这个题目很感兴趣,但真正动手时,往往卡在主客观题混合处理上。要么代码写得一团糟,客观题和主观题的评分逻辑纠缠在一起,改一处动全身;要么就是规则全写在代码里,想调整一个评分标准都得重新读代码逻辑,非常麻烦。今天,我就结合自己之前做过的一个轻量级项目,来聊聊怎么用Python,从零开始搭建一个结构清晰、易于扩展的自动阅卷系统。

2026-02-09 01:14:18 392

原创 基于NLP的智能客服系统:从零搭建与生产环境避坑指南

大家好,最近在做一个智能客服的项目,从零开始踩了不少坑,也积累了一些经验。今天想和大家聊聊,为什么传统的规则引擎在稍微复杂点的客服场景下就“玩不转”了。最开始,我们团队也尝试过用规则引擎。想法很简单:用户问“怎么退货”,我们就匹配关键词“退货”,然后回复预设的退货流程。听起来很美好,对吧?但现实很快就给了我们一记重拳。用户是活生生的人,他们不会按照你设定的“标准话术”来提问。同样是问物流,用户可能会说“我的快递到哪了”、“东西几天能到”、“怎么查运送进度”。

2026-02-08 01:09:04 398

原创 ChatGLM4-9B模型微调实战:从数据准备到生产环境部署的效率优化指南

ChatGLM4-9B模型微调实战:从数据准备到生产环境部署的效率优化指南。

2026-02-07 09:16:25 350

原创 数据科学与大数据技术毕设题目中的效率瓶颈与优化实践:从任务调度到资源复用

数据科学与大数据技术毕设题目中的效率瓶颈与优化实践:从任务调度到资源复用“跑个 30 G 的日志,笔记本风扇一响就是一下午,结果导师一句‘再加个实时指标’,全部重来。如果你也经历过类似的毕设噩梦,大概率踩中了同一片雷区:代码能跑,却跑不动;任务能完,却完不快。下面把我自己踩坑、填坑、再踩坑的全过程拆成 6 段,顺带给出一份“能直接跑”的 mini 工程包,愿后来者少熬几个通宵。

2026-02-07 07:39:37 259

原创 CosyVoice推理加速实战:从模型优化到生产环境部署

CosyVoice推理加速实战:从模型优化到生产环境部署把 300 ms 的延迟压到 80 ms,把 30 QPS 的吞吐抬到 120 QPS,还要让显存占用不爆炸——这是我们在直播配音场景里给 CosyVoice 定的 KPI。下面这份笔记记录了踩坑、调参、上生产全过程,代码可直接搬,指标可复现。

2026-02-07 07:30:34 256

原创 基于大数据的毕业设计课题实战:从数据采集到可视化分析的全链路实现

当前架构已实时算出“商家过去 30 分钟销售额”和“用户异常订单”,如果再加一层 Redis,把用户实时偏好写回 Kafka,就能在 Flink CEP 里做“用户-商家”关联推荐。做毕设时,很多同学把“大数据”当成关键词,却做成了“大数字”——数据量只有几十万行,技术栈却堆了十几种,答辩时老师一句“如果数据再涨十倍,你的脚本还能跑吗?总之,别再把大数据当“PPT 技术”,把这套流程完整跑一遍,写论文时有数据、有图表、有回滚、有灰度,老师想挑刺都难。把异常订单打在校园地图上,颜色按金额分层,大屏效果拉满。

2026-02-07 06:59:00 237

原创 AI 辅助开发实战:基于 Spring Boot 的医疗毕设选题系统设计与避坑指南

AI 辅助开发实战:基于 Spring Boot 的医疗毕设选题系统设计与避坑指南。

2026-02-07 05:13:40 292

原创 ChatGPT Plugin 导航网站的技术实现与架构设计

于是决定用“小团队 + 周末”模式,搭一个“导航站”:把官方目录、GitHub、Twitter 讨论、用户评分全部聚合,再给出“秒开”的搜索与筛选。做完静态导航站,我顺手把“实时语音问答”接进来——对着麦克风问“有没有做思维导图的插件”,AI 直接读库返回答案,省掉敲键盘。从“找不到插件”到“秒级发现”,核心不是堆功能,而是让数据自己说话:爬全、聚类、向量、缓存、监控,每一步都围绕“开发者时间”做减法。结论:团队主力是 React + TS 栈,且需要“静态生成 + ISR”降低后端压力,直接押注。

2026-02-07 05:13:12 240

原创 Chatbot智能体开发实战:AI辅助下的高效构建与性能优化

动手实验里,用豆包语音系列模型把 ASR→LLM→TTS 串成低延迟语音对话,全程有现成镜像和阶梯教程,本地只需 Docker 就能跑起来。对实时交互感兴趣的同学可以顺手体验,再把里面的微服务思路搬回自己的文本 Chatbot,也算“一鱼两吃”。AI 辅助开发的核心,是把“调模型”降权,把“搭系统”提权,让机器做脏活,人只拍板决策。重点在“对话状态”与“意图路由”解耦,方便后续横向扩展。欢迎在评论区留下你的思路,一起把“Chatbot 智能体”做成真正可交付的生产系统。想亲手把上面的链路跑一遍?

2026-02-07 03:33:12 401

原创 LLM智能客服项目实战:基于RAG架构的高效问答系统优化

LLM智能智能客服项目实战:基于RAG架构的高效问答系统优化传统智能客服面临响应延迟与知识库更新滞后两大痛点。本文通过RAG(检索增强生成)架构改造LLM智能客服系统,结合向量数据库实现毫秒级知识检索,配合Prompt工程优化生成质量。实战案例显示,系统响应速度提升3倍,知识更新周期从小时级缩短至分钟级,并提供Python实现代码与压测数据。

2026-02-07 03:23:49 348

原创 基于Zigbee的毕业设计:从零搭建低功耗物联网通信系统(新手入门实战)

今晚就下单一块 2530 板子,把上面的温湿度代码跑通,再试着加一路继电器节点,亲手感受网络扩容、绑定、加密全过程。等你把 4 个节点稳定跑上一周,就会发现“低功耗网状网”不再神秘,而你的毕业设计,已经领先同届一大截。真要做,用 ZCL OTA cluster,镜像分 48-byte block,升级 10 min 起步,答辩前一周再玩。LoRa 适合“野外农场”,BLE 适合“手机秒连”,而 Zigbee 在“室内多节点、低功耗、自组网”场景里性价比最高,也最贴合毕设“小而全”的要求。

2026-02-07 02:13:21 335

原创 淘宝智能客服大模型实战入门:从零搭建到核心功能实现

淘宝智能客服大模型实战入门:从零搭建到核心功能实现传统客服在电商大促时常常“一问三等”,高峰期响应延迟动辄 30 s 以上,意图识别准确率不足 70 %,且无法跨轮次记忆用户已提供的订单号、优惠券等关键信息。面对秒级变化的库存与活动规则,人工坐席+关键词脚本的组合只能“救火”式应付,导致差评率与退货率同步攀升。引入智能大模型后,系统可在 1.5 s 内完成语义理解、知识召回与答案生成,意图识别准确率稳定在 92 % 以上,成为平台降本增效的刚需。

2026-02-07 01:53:37 268

原创 小红书智能客服配置实战指南:从零搭建到生产环境部署

本文针对开发者在配置小红书智能客服系统时遇到的常见问题,提供了一套完整的解决方案。从基础配置到高级功能实现,涵盖对话流设计、意图识别优化和第三方服务集成等核心环节。通过详细的代码示例和架构图,帮助开发者快速搭建稳定高效的智能客服系统,并分享生产环境中的性能调优和异常处理经验。

2026-02-03 01:17:02 333

原创 ChatGPT Plus (GPT-4o) 技术解析:从架构设计到高效应用实践

首 token 延迟(TTFT)经常 >3 s,用户以为“死机”;上下文长度超过 8 k 后,模型开始“健忘”,答非所问;并发一上来,GPU 显存占用线性上涨,成本直接翻倍;多模态输入(语音、图像)需要额外微服务,链路一长,失败率飙到 5 %。这些痛点本质上都是“架构”问题:GPT-4 采用单机八卡张量并行,推理时 batch 一旦加大,显存碎片和通信开销就把延迟拖垮;

2026-01-31 01:43:03 361

原创 ChatGPT各版本效率优化实战:从模型选择到API调优

看完数据、代码和压测,如果你也想亲手搭一套可伸缩的实时语音对话系统,不妨从火山引擎的「豆包」系列模型开始——ASR、LLM、TTS 全链路都给你封装好了,实验里还提供了现成的流式脚手架,改两行参数就能对比 3.5 与 4 的体感差异。把 3.5 做“前置过滤”,4 做“精修复核”,两层架构后,整体 QPS 拉到 18.7,p95 延迟 1 300 ms,成本下降 34 %,错误率 1.2 %。经验:在 4 k→3 k 的压缩区间,多数摘要任务 BLEU 只掉 1-2 %,成本却降 25 %。

2026-01-31 01:40:49 364

原创 AI 辅助开发实战:高效完成网络技术专业毕业设计的工程化路径

你会慢慢发现——AI 擅长“套路”,但网络系统的可观测性、极限性能、异常场景,仍需人来定义边界条件。毕业设计不是“代码行数”比赛,而是“问题定义 + 验证思路”的较量。把 AI 当成 pair programming 的队友,而不是万能外包,你的项目会既有深度,又能按时睡觉。传统做法是一边翻 RFC 一边手撸 C,调通再写报告,时间直接对半砍。AI 辅助开发不是让你“偷懒”,而是把重复、模板、边角料交给模型,自己专注“网络逻辑”与“性能拐点”。做网络技术毕设,,最怕的不是写不出代码,而是“跑不通”——

2026-01-31 01:25:12 373

原创 基于MCP AI智能客服的实战开发:从架构设计到生产环境部署

SaaS化后,A客户要求“退货”意图优先级高于B客户的“优惠券”意图,而规则文件是全局共享的,改一条规则全租户生效,风险极高。过去两年,我先后维护过两套“规则引擎+正则”的老式客服系统,它们在意图识别、长对话管理、多租户隔离三个维度上几乎每天都在踩坑。为了量化选型,我用同一批3.2万条人工标注语料做了离线测评,维度选的是准确率、成本、扩展性,结果如下表。代码已在线上稳定运行四个月,日均30万轮对话,平均RT 520ms,相较老系统提升40%。过短会频繁触发“重试”,过长则占用连接池。也是单次读,O(1)。

2026-01-31 00:51:06 326

原创 大数据技术的毕业设计:从选题到落地的完整技术路径解析

许多计算机专业学生在完成“大数据技术的毕业设计”时,常陷入技术栈混乱、数据规模不足或架构脱离实际的困境。本文以技术科普视角,系统梳理主流开源生态(Hadoop、Spark、Flink)的适用边界,提供轻量级但具备生产雏形的端到端方案。读者将掌握如何构建可演示、可扩展且符合工程规范的大数据流水线,并规避常见学术项目中的“玩具式”陷阱。

2026-01-31 00:50:49 255

原创 ChatGPT PreAuth PlayIntegrity验证失败:AI辅助开发中的解决方案与避坑指南

证书混用:debug 包签名一定在 Play 控制台加白名单,否则 integrityToken 的对不上时间漂移:Android 系统时间被用户调成 1970 年,验签直接挂,用服务器时间校正iat重试风暴:退避算法必须加随机 jitter,不然所有失败节点同一时刻重试,把网关打挂token 长度:integrityToken 平均 600~800 B,GET 请求会超 URL 长度,务必改 POST日志脱敏:token 属于敏感串,打日志要 mask 中间 30%,否则合规审计会被挑刺。

2026-01-31 00:29:16 277

原创 通信工程MATLAB毕业设计实战:从系统建模到性能优化的完整路径

在% 子载波数% 循环前缀长度% OFDM符号数% 仿真SNR范围% 固定随机种子。

2026-01-31 00:19:49 278

原创 实战解析:如何利用additive latency 0 cl-1优化分布式系统性能

additive latency 0 cl-1技术为分布式系统性能优化提供了新的思路。通过消除连接建立延迟、精简协议头、支持并行处理等创新设计,它能够显著提升系统吞吐量和降低延迟。从非关键业务开始试点逐步替换高延迟敏感的服务调用建立完善的监控指标关注社区最新进展和最佳实践想进一步探索分布式系统优化技术?可以尝试从0打造个人豆包实时通话AI动手实验,体验如何构建低延迟的实时通信系统。我在实际操作中发现,这些优化技术的学习曲线其实很平缓,效果却立竿见影。

2026-01-25 01:50:43 253

原创 Android WebRTC 实现 P2P 通信:从原理到实战避坑指南

WebRTC 在 Android 上的 P2P 实现涉及多个技术环节,需要开发者对音视频处理和网络协议有深入理解。通过本文介绍的核心流程和优化建议,你应该能够构建一个稳定的 P2P 通信应用。WebRTC 官方文档Android WebRTC API 参考WebRTC 示例代码库如果你对实时音视频技术感兴趣,也可以尝试从0打造个人豆包实时通话AI动手实验,体验如何将 AI 能力与实时通信技术结合。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。

2026-01-25 00:11:47 320

原创 Android WebRTC 外置摄像头开发实战:从接入到性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 06:42:05 395

原创 Anaconda Prompt在D盘创建虚拟环境:新手避坑指南与最佳实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 05:30:52 445

原创 解决 ‘inittokenencoders failed to get gpt-4o token encoder‘ 错误的完整指南

通过上述步骤,你应该已经解决了错误。这个问题虽然看起来简单,但涉及到了环境配置、依赖管理和错误处理等多个方面,是学习AI应用开发中一个很好的实践案例。如果你想进一步学习如何构建完整的AI应用,可以尝试从0打造个人豆包实时通话AI这个动手实验。我在实际操作中发现,它从语音识别到对话生成再到语音合成的完整流程讲解得非常清晰,即使是初学者也能跟着一步步实现自己的AI语音助手。实验中对各种API的调用和错误处理也讲解得很到位,对于理解类似本文中的问题有很大帮助。

2026-01-24 05:09:03 258

原创 Android Studio集成语音识别SDK实战指南:从导入到避坑

集成语音识别SDK看似简单,但实际上有很多需要注意的细节。通过本文的介绍,你应该已经掌握了从SDK选型到实际集成的完整流程,以及如何避免常见的坑。如果你想进一步探索AI语音技术的应用,可以尝试从0打造个人豆包实时通话AI这个实验项目,它提供了一个完整的实时语音交互解决方案,对于理解语音技术的全链路实现非常有帮助。我在实际操作中发现,这个实验的步骤非常清晰,即使是刚接触语音识别的新手也能顺利完成。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。

2026-01-24 01:35:36 263

原创 AI视频生成技术解析:从Stable Diffusion到SVD的核心实现与优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 01:30:24 396

原创 Android语音助手模块性能优化实战:从延迟优化到内存管理

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 00:56:42 647

原创 AI伴侣Eve的效率优化实践:从架构设计到性能调优

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 00:45:03 586

原创 Android语音助手深度集成DeepSeek:技术选型与实现详解

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 06:47:53 650

原创 AI辅助开发实战:基于过滤器的Web项目敏感词过滤系统设计与实现

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 04:22:39 668

原创 ICCV NavSim V2端到端驾驶挑战赛第三名技术解析:AI辅助开发实战

2025年ICCV NavSim V2端到端驾驶挑战赛聚焦自动驾驶仿真领域最前沿的技术难题。比赛采用高度拟真的城市仿真环境,要求参赛系统在完全端到端的框架下完成复杂场景的自主导航任务。场景复杂度:包含动态障碍物、恶劣天气、突发路况等20类边缘场景实时性要求:决策延迟需控制在100ms以内安全指标:包括碰撞率、轨迹平滑度、交通规则遵守率等提出动态传感器融合策略开发分层强化学习决策框架实现高效的混合规划控制算法引入世界模型提升预测能力开发更高效的在线学习机制优化多智能体协同策略。

2026-01-23 04:03:46 571

原创 AI语音通话项目实战:GitHub热门开源项目解析与避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 06:19:57 567

原创 Android集成Sherpa-ncnn实现高效离线语音识别:从模型部署到性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 00:06:58 601

原创 Python实战:从零构建AI语音聊天机器人源码解析与避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 06:41:28 483

原创 AI绘图关键词大全:从原理到实战的高效Prompt工程指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 06:39:10 497

原创 AI Prompt Engineering Handbook:从原理到实战的开发指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 06:25:54 468

原创 Anaconda Prompt高效目录切换指南:从基础操作到批量处理技巧

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 05:17:24 240

原创 Android ASR 实战:基于 Whisper 的高效语音识别方案与性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 04:42:20 262

原创 Anaconda Prompt无法激活环境的深度排查与解决方案

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 01:03:35 244

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除