自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(70)
  • 收藏
  • 关注

原创 软件工程毕业设计论文实战指南:从选题到可运行原型的完整路径

清晰边界的三层代码Swagger 自证接口单元测试守护逻辑Flyway 管理数据库版本Docker 一键演示下一步:打开 draw.io,把模块、依赖、端口全部画成一张系统架构图,再推到 GitHub 公共库——不仅方便导师随时查看,也能作为简历上的“项目亮点”。毕业设计不是句号,把代码留在开源社区,让后面的学弟学妹继续迭代,你的第一次“工程级”PR 也就完成了。祝你一次过答辩,仓库 Star 破百!

2026-02-13 01:00:46 295

原创 基于Dify搭建AI智能客服系统的实战指南:从架构设计到生产部署

市面上做对话机器人的平台和框架不少,我们重点对比了DifyRasa和Google 的 DialogFlow。Rasa:功能强大,开源免费,高度可定制化。但正因为此,它的学习曲线陡峭,需要深入理解其 NLU(自然语言理解)和 Core(对话管理)的 pipeline,自己处理模型训练、部署和运维。对于追求开发效率、希望快速上线的团队来说,初始投入较大。DialogFlow:谷歌出品,NLU能力很强,尤其是对英文的支持。但它更像一个黑盒,定制化能力受限,且与国内生态集成有时会遇到网络或合规问题。

2026-02-08 01:17:47 382

原创 基于通义千问大模型实现AI智能客服的架构设计与工程实践

我们曾用 6B 级中小模型做意图分类,准确率 82%,但遇到“转人工”阈值就得下调到 0.6,结果 30% 流量还是流回人工坐席,客服主管直接吐槽“AI 像个实习生”。把通义千问塞进客服链路后,我们意图准确率提升 40%,平均响应压到 500 ms 内,人工坐席量下降 28%,基本达到“实习生”变“熟练工”的跃迁。微调后意图准确率从 82% → 91%,槽位 F1 提升 9 个百分点,而推理延迟只增加 18 ms,可接受。状态机解决“用户改需求”场景,例如先问“退货”,中途又问“换颜色”。

2026-02-07 08:16:14 325

原创 Java实战:构建高可用AI智能客服回复系统的架构设计与实现

总结一句话:高并发场景下,别让任何一块短板成为“情绪崩溃”的导火索——无论是 Redis 的 Lua,还是 TF-Serving 的 label,细节里藏着真正的可用性。痛定思痛,我们决定用 Java 生态重新打造一套“高可用 AI 智能客服回复系统”,目标只有一个:顶住 5 k QPS 的同时,让对话体验像真人。加载,返回的新版本号作为乐观锁依据,冲突时重试,最多 3 次,实测 5 k 并发下写冲突率低于 0.3%。业务高峰时,先把用户提问扔进队列,后端按消费能力拉取,避免直接把模型推理层打挂。

2026-02-07 07:34:11 364

原创 FPGA毕设实战:从图像处理流水线到可部署硬件加速器的完整实现

FPGA毕设实战:从图像处理流水线到可部署硬件加速器的完整实现摘要:很多同学的 FPGA 毕设卡在“仿真 OK,上板 GG”这一步。本文以“实时边缘检测”为靶子,记录我用 Xilinx Vivado HLS 把 OpenCV 的 Canny 算法一路压缩成可烧录的比特流的全过程——从 C++ 函数到 AXI-Stream 接口,再到 Zynq-7020 实测 720p@60 fps。文章把踩过的坑、资源报表、时序收敛曲线和 ILA 截图全部摊开,希望能给正在做毕设的你一张“可落地的地图”。

2026-02-07 06:04:07 330

原创 Cocos Creator 语音聊天功能实现指南:从 WebRTC 到生产环境部署

在 Cocos Creator 中实现实时语音聊天功能常面临跨平台兼容性、网络延迟和音频质量等挑战。本文详细解析如何集成 WebRTC 技术栈,提供完整的 TypeScript 实现方案,包含信令服务器搭建、NAT 穿透处理和音频编解码优化。通过本方案,开发者可快速构建低延迟、高并发的游戏内语音系统,并规避移动端常见的内存泄漏问题。

2026-02-07 04:47:15 249

原创 锋答AI智能客服在Github上的高效集成与性能优化实战

模型端侧量化:锋答已经放出 INT8 校准脚本,配合 Ampere 卡的稀疏化,还能再提 40 % 吞吐,后面想试试。业务端侧缓存:把高频问题直接预生成答案,放 CDN 边缘节点,用户就近读,延迟压到 100 ms 内。多租户隔离:现在所有租户共享一个 worker,后续打算用把 GPU 切分,既保证 SLA 又节省卡。AI 客服的优化没有终点,“模型快”只是入场券,“业务缓存 + 弹性隔离”才是高并发战场的下半场。如果你也基于锋答 Github 做了改进,欢迎来 PR,一起把响应速度卷到极限。

2026-02-07 03:22:31 273

原创 大模型+智能客服实战指南:从零搭建高可用对话系统

意图模型结果缓存 5 分钟,LLM 最终答案缓存 30 分钟,Key 用“意图+关键词”哈希,命中率 42%,省 30% Token。”规则引擎里没写,客服只能转人工,排队5分钟起跳。“我要退货”和“我想退差价”只差两个字,关键词匹配直接翻车,后台日志里 40% 的误判都来自这种“近义词陷阱”。结论:大模型在“准确率 + 维护成本”两项上碾压,但延迟和 Token 费用是硬伤,后面会给出缓解方案。传统方案把每句话当独立请求,用户刚说完订单号,下一秒问“那邮费呢”,系统又让他重输一遍,体验瞬间崩塌。

2026-02-07 03:16:32 313

原创 CosyVoice API 调用全指南:从注册到实战避坑

CosyVoice 把“在线 API”做成 REST 风格,官方宣称 50 QPS 起步、支持 MP3/WAV/PCM 三种容器格式,按字符量计费,没有“起步包”门槛。目前示例都是“整段文本→整段音频”的离线模式,如果要做实时对话,就需要流式合成:边输入文本边返回音频帧,网络延迟要压在 200 ms 以内。以下示例同时给出 Python 3.10+ 与 Node.js 20+,均带类型注解、异常捕获、重试逻辑,开箱即用。(Node),保持 20~50 长连接,TCP 握手开销可省 30 ms+。

2026-02-07 03:02:21 365

原创 深入解析costar提示词框架:从设计原理到高效应用实践

把提示词纳入工程化体系,就像当年把 SQL 从代码里抽离成独立文件——一开始觉得麻烦,一旦习惯就再也回不去。costar 不是银弹,但它至少让“改一句提示”不再等于“全量回归”。

2026-02-07 02:12:14 323

原创 基于eNSP网络规划与设计毕设:新手入门实战指南与避坑要点

教学网段禁止访问宿舍网段;服务器区仅对外开放80、443、22;动态NAT部署在出口路由器,仅将私网10.0.0.0/8转换为公网地址池200.1.1.10-200.1.1.20,避免全端口暴露。无线接入:新增AC+AP,将无线用户划入独立VLAN,并在汇聚层启用mDNS Gateway,实现AirPlay跨网段投屏。防火墙集成:在出口路由器前挂USG,将NAT、IPS、URL过滤上移,路由器专注路由,实现功能解耦。

2026-02-07 01:46:24 228

原创 ChatGPT安卓安装包深度解析:从下载到高效部署的完整指南

我跟着文档半小时就调通了麦克风输入→豆包 ASR→豆包 LLM→豆包 TTS→扬声器输出,全程低延迟,代码比上文还简洁。把上面的代码跑通后,你会明显感觉到:同样一台中端机,首次打开聊天页从 5 s 降到 1.2 s,后台并发从 5 路提到 20 路仍不 OOM。效率提升不是口号,而是把“下载、缓存、推理、加密”四个环节各抠出几百毫秒后的结果。我们可以把“下载→缓存→推理”拆成三步,按需加载,既省流量又降内存。打开,批大小=1 时 latency 从 680 ms 降到 290 ms,功耗仅增 8%。

2026-01-31 01:01:58 277

原创 智能客服文本识别机器人技术架构实战:从零搭建高可用 NLP 服务

整套流程跑下来,最大的感受是:别把模型当黑盒,也别把规则当垃圾。两者结合,一边给模型“兜底”,一边让规则“收敛”,才是中小团队能维护得住的方案。希望这份从踩坑日记里扒出来的实战笔记,能帮你少熬几个夜,早日让客服机器人“听懂人话”。祝编码愉快,有问题评论区一起掰扯!

2026-01-31 00:19:50 325

原创 深入解析ASKO3-X语音助手的全双工通信实现:从WebSocket到实时音频流处理

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 07:42:00 392

原创 AI降重提示词实战:从原理到工程化落地的最佳实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 07:26:28 366

原创 基于大模型的AI智能拆解视频技术实战:从原理到效率优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 06:53:56 508

原创 AI豆包本地部署实战:从环境配置到生产级优化指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 06:17:19 532

原创 Android WebRTC 视频增强清晰度:从算法优化到工程实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 05:10:47 275

原创 AI提示词工程实战:从基础原理到高效优化策略

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 04:28:27 326

原创 AI豆包手机在移动开发中的实战应用:从模型集成到性能优化

模型转换常见报错解决方案:使用豆包提供的op替换工具转换自定义层多线程最佳实践每个线程维护独立的AIEngine实例避免跨线程共享Tensor对象低端机适配方案when {isLowEndDevice -> config.setPrecision(FP16) // 半精度模式hasNPU -> config.setPrecision(INT8) // 8位整型量化else -> config.setPrecision(FP32) // 常规模式。

2026-01-24 01:27:33 280

原创 Android Moshi实战:优雅处理后台字段返回null的解析方案

基础适配器创建null} else {null) {适配器注册null}).build()通过本文介绍的各种技术方案,开发者可以构建出健壮的JSON解析逻辑。Moshi凭借其灵活的适配器机制和Kotlin友好特性,成为处理null字段问题的理想选择。根据业务场景选择合适的处理策略建立完善的错误处理机制持续优化解析性能期待大家在评论区分享自己的实践经验和优化方案。对于想进一步探索AI辅助开发的读者,可以参考从0打造个人豆包实时通话AI实验项目,体验现代AI技术在开发流程中的应用。

2026-01-24 01:02:49 343

原创 Android端基于Sherpa ONNX实现高性能VAD:从原理到工程实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 06:47:50 375

原创 AppInventor AI伴侣开发实战:从零搭建智能应用的全流程指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 06:31:58 375

原创 从AIGC到Physical AI:AI辅助开发中的Agent架构设计与实现

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 06:13:30 384

原创 Agent提示词开发实战:从零构建高效对话系统的关键技巧

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 05:14:50 299

原创 Android TTS引擎深度解析:从原理到生产环境最佳实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 04:41:21 500

原创 AI语音聊天机器人变声技术实现:从音色转换到后台架构设计

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 03:21:55 484

原创 AppInventor2连接手机AI伴侣实战指南:常见问题排查与解决方案

错误1:华为EMUI系统连接失败解决方法:进入手机管家→启动管理→关闭AI伴侣的自动管理错误2:Mac电脑无法发现设备关键操作:在终端执行错误3:连接成功但无法实时预览排查步骤:检查项目使用的SDK版本是否匹配确认没有使用中文命名组件尝试创建全新的测试项目验证基础功能隐藏技巧# 删除所有缓存配置(Windows路径)通过这个实战指南,你应该已经掌握了AppInventor2与手机AI伴侣的稳定连接方法。如果想进一步探索AI与移动开发的结合,推荐体验从0打造个人豆包实时通话AI。

2026-01-23 01:51:58 262

原创 Prompt Engineering 实战指南:17 种核心方法解析与应用场景

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 01:40:04 295

原创 Android集成讯飞语音助手SDK实战:从接入到优化的全流程解析

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 01:10:08 363

原创 App Inventor AI 伴侣实战指南:如何用 AI 辅助提升低代码开发效率

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 05:57:15 491

原创 构建高可用AI情绪对话系统网页的实战指南:从架构设计到性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 05:23:21 596

原创 Android PCM播放实战:从基础原理到避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 01:50:20 335

原创 Anaconda Prompt环境配置全指南:从基础配置到高效管理

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 00:03:35 311

原创 AI提示词大全工具:从原理到高效实践指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 05:15:51 227

原创 从零构建现代前端布局:Div与CSS最佳实践指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 04:50:36 181

原创 Android Studio集成WebRTC实战:从零构建实时音视频应用

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 03:48:33 221

原创 .NET Core 服务器到客户端流式传输:原理、实现与性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 03:21:54 285

原创 Android WebSocket 实战:从基础实现到生产环境避坑指南

消息持久化:使用Room缓存未送达消息协议优化:采用Protobuf替代JSON状态同步:实现SeqID保证消息顺序从0打造个人豆包实时通话AI实验,该实验不仅包含WebSocket实现,还整合了语音识别与合成模块,适合需要构建完整实时通信系统的开发者。在实际操作过程中,我发现其模块化设计让各功能组件可以灵活组合,特别适合快速验证通信方案。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。

2026-01-21 01:42:37 235

原创 2025提示词工程学习:从零构建高效AI交互系统的实战指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 00:51:37 230

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除