自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(75)
  • 收藏
  • 关注

原创 Chinese-RoBERTa-wwm模型微调实战:从数据准备到生产部署的避坑指南

在实际对比中,Chinese-RoBERTa-wwm 在诸如 CLUE 这样的中文评测基准上,通常比原始的 BERT-wwm 有 1-2 个百分点的提升,尤其是在需要理解词语内部关系的任务上。我采用了一种更保守的方法:用 TF-IDF 找出句子中最重要的词(非停用词),然后用同义词词林或哈工大同义词词库中的同义词进行替换。通常,靠近输出的顶层(分类器)需要更快地学习新任务,而底层的 Embedding 和 Transformer 层已经包含了丰富的通用语义知识,应该用更小的学习率微调,避免“灾难性遗忘”。

2026-02-08 01:07:22 243

原创 基于单片机的农田监测系统毕业设计:效率提升与低功耗优化实战

一套小小的农田节点,把“事件驱动”与“低功耗”做到极致,电池也能跑 180 天。毕设答辩那天,评委老师问:“如果 2 km 外没有 LoRa 网关,怎么让多节点自组网?”——这个问题我至今还在迭代。无网络覆盖区域,能否用 STM32 做时隙中继?或者把节点当简易 MESH 路由器,靠前向纠错+跳频实现多跳?留给你我一起动手复现、验证。把代码拉下来,先让电流表降到 2 µA,再谈网络拓扑,也许下一个更优雅的答案就诞生在你的桌面。

2026-02-07 09:31:09 111

原创 软件工程人工智能方向毕业设计:从选题到落地的完整技术路径解析

软件软件工程人工智能方向毕业设计:从选题到落地的完整技术路径解析本科高年级或研究生阶段,把“AI”写进毕业设计题目容易,要让项目真正跑起来、经得起老师三连问“可维护吗?可测试吗?可部署吗?”却难。下文用技术科普的视角,把常见痛点、选型对比、端到端示例、性能/安全考量以及生产环境踩坑经验串成一条可复现的路径,帮你把“玩具”升级成“工程”。

2026-02-07 09:25:21 126

原创 ChatGPT生成三维模型实战:从提示词到Blender集成

ChatGPT生成三维模型实战:从提示词到Blender集成摘要:本文针对开发者使用ChatGPT生成三维模型时遇到的格式兼容性、参数调优和工程化集成三大痛点,提出一套基于Python和Blender API的自动化解决方案。通过解析GPT-4的文本到3D模型生成机制,结合网格优化算法和格式转换中间件,实现生成效率提升40%且支持主流3D引擎导入。读者将获得可直接复用的代码模块和参数调优对照表。

2026-02-07 08:30:41 203

原创 阿里云百炼智能客服从入门到实战:快速搭建企业级对话机器人

模型未上线前,先配置【知识库】→【FAQ 兜底】,阈值 0.6;当 TopIntent 置信<阈值时直接返回 FAQ 答案,可缓解初期“答非所问”投诉。阿里云百炼智能客服用机器学习 NLU 替代硬规则,官方数据意图召回提升 25%+,同时支持在线标注自动回流训练,维护人力从“周”降到“小时”。传统客服系统普遍采用“关键词+正则”组合的规则引擎,维护成本随业务增长呈指数级上升。当业务横向扩展到多机房、无状态网关时,如何设计“对话状态”的分布式存储方案?过滤,命中则返回固定话术“涉及敏感信息,已转人工”。

2026-02-07 08:03:27 149

原创 LLM强化学习在智能客服改进中的实战应用:从模型调优到生产部署

本文针对智能客服系统在复杂场景下响应不准确、泛化能力差等痛点,提出基于LLM强化学习的改进方案。通过对比不同强化学习算法在对话策略优化中的表现,结合具体代码示例展示如何实现奖励函数设计和策略梯度训练。读者将掌握如何提升客服系统的意图识别准确率30%以上,并学习到生产环境中模型热更新和异常处理的实战技巧。

2026-02-07 07:49:20 190

原创 智能客服系统数据集构建实战:从数据清洗到模型训练全流程解析

做 100 万条标注,预算立刻飙到七位数;不标,模型又学不精。有人用半监督+主动学习小步快跑,有人直接上众包“人海战术”,也有人干脆买现成数据集再微调。欢迎留言聊聊最贴合业务的那条“省钱又好用”的路线。以下代码均跑通 Python 3.9,transformers 4.30,按顺序复制即可复现。做智能客服的同学都懂,最怕的不是算法,而是“没料”。

2026-02-07 06:48:08 217

原创 基于AI辅助开发的agent智能客服项目实战:从架构设计到性能优化

下一步就等增量学习把意图模型再“喂”胖一点,顺便试试多模态,让客服机器人不光听得懂,也能看得懂。标注数据只有 1.2 万条,Copilot 提示用“反向翻译”做增强:中→英→中,再用同义词替换,数据量翻 3 倍,准确率提升 4.3%。单 Pod 4C8G,并发 1000 用户,QPS 从 380→610,平均延迟 240 ms→145 ms,CPU 占用降 18%。跑,INT8 量化后模型 390 MB→97 MB,推理延迟再降 42%,显存省一半。手机号、身份证用正则提前掩码,再存日志。

2026-02-07 05:45:41 230

原创 AI智能客服机器人论文实战:从模型训练到生产环境部署全流程解析

更别提多轮追问“那帮我改地址吧→算了还是加急→加急要多少钱”这种连环套,传统 Rule-based 系统像健忘的老人,每一句都当成新对话,上下文一丢,用户只能怒敲“转人工”。我用 Sentence-BERT 把标准问题 encode 成 768 维向量,线上实时算余弦,召回 Top-5,再交轻量 Cross-encoder 精打一次分数,兼顾速度与精度。我把 DST 拆成三层:用户意图、已提供槽位、待补槽位,用 Redis Hash 存,每轮更新,TTL 设 15 min 自动过期,节省内存。

2026-02-07 03:58:09 280

原创 ChatGLM与ChatGPT技术选型指南:从架构差异到AI辅助开发实战

如果看完对比仍觉得“纸上得来终觉浅”,可以把网页实时通话当成下一个试验田。从0打造个人豆包实时通话AI动手实验把ASR、LLM、TTS串成一条低延迟链路,官方已备好云端额度与示例代码,本地无需高配显卡。笔者亲测,按文档半小时就能跑通麦克风到音箱的全双工对话,对理解模型选型、链路程延迟有肉眼可见的帮助。

2026-02-07 03:00:56 286

原创 项目接入智能客服的架构设计与性能优化实战

去年“双十一”前,公司把客服系统从人工全部切到智能客服,结果流量一冲,接口超时率飙到 18%,用户吐槽“机器人只会说‘正在为您转接’”。按用户尾号灰度,先 5% → 20% → 100%,每步观察错误日志与业务指标,发现“白名单未同步”导致 0.7% 误判,立即回滚配置,10 min 修复。,若 TTL 剩余 < 30 s,主动推送“会话已过期,请重新描述问题”,避免机器人答非所问。一句话:智能客服不是“插上就灵”,高并发场景下,接口、状态、敏感词,每一步都可能踩坑。代码里优先匹配白名单,再跑 DFA。

2026-02-07 02:43:48 292

原创 智能客服机器人开发实战:基于AI辅助的高效对话系统设计与避坑指南

智能客服这条赛道,AI 辅助只是起点,真正的“无人客服”还有很长的对话要走。传统客服机器人大多靠“if-else + 正则”硬编码,上线初期响应飞快,一旦对话路径超过三层,维护人员就开始怀疑人生。去掉后 6 层 attention head,推理延迟从 120 ms 降到 68 ms,精度下降 < 1%。痛点总结:规则系统=“穷举地狱”,越到后期边际成本越高,AI 辅助势在必行。做技术选型时,我们把需求拆成四象限:准确率、可解释性、迭代成本、私有化成本。

2026-02-07 02:38:44 324

原创 构建高质量中文NLP语料库:从数据清洗到模型训练全流程实战

本文按“采集→清洗→标注→存储→训练”全流程,给出可落地的工程方案,代码基于 Python 3.8+,亲测单机可扛千万级语料。清洗后的语料若直接随机标注,成本线性爆炸。实验基线:CLUECorpus 100 万句,RTX-3090 24G,batch=32,lr=2e-5,epoch=3。结论:精洗相比轻洗,F1 提升 1.4pp,但去重带来的增益更显著,说明“干净 + 多样”才是硬道理。结论:通用语料适合热启,垂直任务必须自采自洗,否则微调阶段 F1 掉 5~10 个点是常态。

2026-02-01 01:00:47 238

原创 智能客服系统效率提升实战:从架构优化到创意功能实现

用 Sentinel 网关,针对“同一 IP 5 min 内>1k 次调用”直接返回 429,并把 IP 写进 Redis 黑名单 30 min,防止恶意刷接口拖垮 Kafka。上线后,同样 8 核机器,QPS 从 1.2k 提到 4.8k,CPU 利用率反而降到 55%,因为线程不再空等 IO。前端每轮只负责把“用户原文”送进来,网关返回“当前状态+机器人回复”,再也不担心上下文被覆盖。一句话:性能瓶颈 + 业务混乱,让“智能”客服既不智能,也不客服。欢迎留言聊聊你的思路,一起把客服做成“老乡见老乡”。

2026-01-31 01:41:20 266

原创 ChatGPT网页版入口集成指南:AI辅助开发实战与避坑

我跟着教程 30 分钟就搭出了能语音对话的小助手,改两行配置还能换音色,小白也能顺利体验。等你把 ChatGPT 网页版入口搞定,再来试试让 AI 开口说话,会打开另一扇大门。下面示例基于 Node 20 + Express,演示“后端转发 + 前端 SSE”的最小闭环,代码已按 Clean Code 拆层,注释写满,直接跑通。先跑通最小闭环,再逐步把 AI 嵌入需求、编码、测试、发布各阶段,这才是真正的 AI 辅助开发。一句话:AI 辅助开发最大的成本不是模型,而是“让模型稳定、安全、低延迟地跑起来”。

2026-01-31 00:59:51 557

原创 ChatTTS在线服务架构解析:如何实现高并发低延迟的实时语音合成

ChatTTS在线服务架构解析:如何实现高并发低延迟的实时语音合成。

2026-01-31 00:57:21 313

原创 ChatGPT AI绘画软件的技术实现与优化指南

三年前,AI 绘画还停留在“能看就行”的阶段;今天,用户已经用“商用级”来要求它。把 ChatGPT 的流畅对话能力嫁接到绘画场景,本质是把“语言先验”塞进视觉生成链路,让模型听懂人话再落笔。这条链路里最大的拦路虎不是“画不像”,而是“画得太随机”:细节崩坏、风格漂移、高分辨率显存爆炸。下面这份笔记把我最近落地一款 ChatGPT 风格 AI 绘画软件时踩过的坑、攒下的代码、调参黑魔法全部摊开,希望能帮你少熬几个夜。

2026-01-31 00:29:17 303

原创 Android Moshi JSON解析实战:从性能优化到生产环境避坑指南

/ 序列化:Date -> String) {// 反序列化:String -> Datenull // 返回null而不是抛出异常// 使用方式.build()基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)

2026-01-24 07:35:27 639

原创 AI人机语音交互开发实战:从模型选型到生产环境部署

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 06:48:16 679

原创 AI语音与音乐生成模型原理实战:从零构建端到端生成系统

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 06:33:50 538

原创 AI辅助语音助手测试实战:从自动化到智能化的测试方案演进

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 05:05:53 313

原创 Android开发实战:使用Moshi高效解析JSON数据的最佳实践

编译时类型检查使崩溃率降低40%解析性能提升35%以上与Kotlin语言特性完美配合对于新项目,建议直接采用Moshi作为JSON解析方案。对于存量项目,可以逐步迁移关键路径的解析逻辑。结合Retrofit和协程使用,可以构建类型安全且高效的网络请求体系。想体验更多现代Android开发技术?可以尝试从0打造个人豆包实时通话AI动手实验,将前沿AI能力集成到你的应用中。我在实际操作中发现,这种结合现代工具链的开发方式能显著提升开发效率和用户体验。

2026-01-24 04:53:15 298

原创 AppStore关键词优化实战:从算法原理到ASO工具开发

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 02:08:46 416

原创 AI发展的四个阶段:从感知到代理的效率提升实践指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 01:19:36 304

原创 从零构建AI大模型生成短视频:技术选型与实战避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 01:15:22 316

原创 AMD GPU上高效部署Whisper模型:从环境配置到推理优化实战指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 00:12:05 698

原创 Android开发实战:如何优雅处理语音助手与其他App的音量冲突

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 06:54:51 800

原创 AI模型微调实战:从数据准备到生产部署的避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 06:11:10 952

原创 Android语音通话实战:基于WebRTC的高清通话实现与性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 04:44:47 927

原创 Anaconda Prompt高效启动Python:AI辅助开发环境配置指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 01:57:53 236

原创 解决Anaconda Prompt的‘gbk‘编解码错误:从原理分析到实战修复

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 00:44:56 704

原创 Abaqus STT文件解析与实战应用指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 06:37:54 767

原创 Android Moshi 入门指南:从 JSON 解析到实战避坑

FromJson@ToJson// 使用自定义适配器.build()经过实际项目验证,Moshi 确实是一个高效、灵活的 JSON 处理库,特别适合现代 Android 开发。它的代码生成方式避免了反射开销,简洁的 API 设计降低了学习成本,对 Kotlin 的良好支持更是锦上添花。如果你想亲身体验 Moshi 的强大功能,推荐尝试从0打造个人豆包实时通话AI动手实验。这个实验不仅会用到 JSON 解析,还会带你完整实现一个实时语音应用,是检验新技术学习成果的绝佳机会。

2026-01-22 05:35:12 982

原创 AI提示词工程实战:从基础到高效调优的完整指南

为AI模型明确设定角色,可以显著提升输出的专业性和一致性。你是一位资深Python开发专家,专注于编写高效、可维护的代码。请用专业但易懂的方式回答问题,并提供实际代码示例。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)

2026-01-22 01:38:10 316

原创 Anaconda Prompt实战:高效查找与验证Python安装包的完整指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 00:49:37 770

原创 Agent 设计模式实战:如何提升系统效率与可维护性

Agent设计模式通过将业务实体建模为自治的计算单元,在保持系统弹性的同时提升了执行效率。从小规模关键路径开始试点建立完善的监控指标体系逐步替换传统调度模块想进一步体验现代AI与分布式系统的结合?可以参考这个从0打造个人豆包实时通话AI实验项目,其中Agent思想在语音处理链路中得到典型应用。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。

2026-01-21 06:58:14 840

原创 AI电话机器人接入大模型的效率优化实战:从架构设计到性能调优

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 06:22:21 663

原创 Android系统高效接入豆包大模型SDK:性能优化与避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 06:09:24 686

原创 AI语音助手APK开发实战:从架构设计到性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 05:20:53 300

原创 AGI与生成式AI在开发辅助中的实践:从代码生成到架构优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-21 05:15:37 340

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除