自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(84)
  • 收藏
  • 关注

原创 ChatGPT网络配置实战:SSL证书验证问题深度解析与解决方案

证书验证失败看似小报错,却能在凌晨三点把全链路拉崩。先把操作系统、容器、语言运行时三条信任链对齐,再让代码自带证书链与重试,最后加上监控与自动轮换,才能安心享受 ChatGPT 带来的创造力。如果想亲手体验「让 AI 听得见、答得快、说得顺」的完整闭环,不妨抽一小时试试从0打造个人豆包实时通话AI动手实验,实验里同样会遇到 SSL 配置环节,正好把本文方案直接搬过去用,小白也能一次跑通。

2026-02-07 09:36:42 321

原创 AI 辅助开发实战:基于采摘机器人毕业设计的智能感知与控制架构

整套流程我前后改了 4 版,真正耗时的是“调相机角度”和“给导师画 PPT”,写代码只占 30 % 不到。AI 辅助开发不是替你写论文,而是把“重复体力”变成“对话式提需求”,让你把精力留在创意和实验。如果你也在为毕设掉头发,不妨 fork 我的仓库,换一张自己的数据集,先把识别节点跑起来;哪怕机械臂暂时用夹子代替,完整闭环跑通那一刻,你会对“AI 辅助”有实感。下一步,试试把这套架构搬到喷药无人机上?欢迎 PR 交流,一起把“农业机器人毕设”卷出新高度。

2026-02-07 09:28:44 298

原创 ChatTTS模型高效部署实战:从Safetensors到生产环境的最佳实践

本文针对ChatTTS模型部署中的性能瓶颈和内存占用问题,深入解析如何利用Safetensors格式优化模型加载效率。通过对比传统PyTorch模型加载方式,展示Safetensors在IO速度和内存管理上的优势,并提供完整的部署代码示例和性能测试数据。读者将掌握如何在实际项目中减少50%以上的模型加载时间,同时降低内存峰值使用量。

2026-02-07 09:09:32 224

原创 微信小程序影城毕业设计:从零构建高可用影院选座系统的技术实践

写完本文,我把最早“能跑就行”的代码翻出来重新压测,发现同样 200 并发,锁座成功率从 92% 提到 99.6%,冷启动降到 180 ms,导师再看也挑不出刺。技术点其实就那些:事务、幂等、索引、缓存、WebSocket,但每一步都踩坑才记得住。如果你也在做「微信小程序影城毕业设计」,不妨把上面的云函数和索引脚本拷过去,把自己的业务字段替换一下,跑通压测,再思考“多影院”怎么拆表。等你真正能把一套系统从 0 部署到线上,并扛住 1000 人同时选座,你会发现——毕设不是终点,而是全栈能力的起跑线。

2026-02-07 08:51:51 393

原创 基于langchain4j实现智能客服:从架构设计到生产环境避坑指南

去年“618”大促,客服峰值 QPS 2 k,老系统直接雪崩。痛定思痛,我们决定用 Java 生态最友好的 LLM 框架——langchain4j 重构,目标只有一个:让客服先“学会说话”,再“扛住流量”。一句话总结:团队全是 Java 栈,不想额外养 Python 运维,也不愿把核心语料放到公网,LangChain4j 成了“最省头发”的选择。作为一线 Java 开发,我维护过基于关键字匹配的老客服系统,也踩过开源对话框架的坑。欢迎留言聊聊你们的做法,一起把智能客服做成“真正不慌”的系统。

2026-02-07 07:36:46 230

原创 ChatGPT 4o 新手入门指南:从零搭建智能对话系统的实战解析

ChatGPT 4o 新手入门指南:从零搭建智能对话系统的实战解析。

2026-02-07 07:28:00 282

原创 VS Code中cl.exe构建调试的终极指南:如何绕过Developer Command Prompt限制

关键词:cl.exe、Developer Command Prompt、VS Code、C++、构建、调试、效率提升。

2026-02-07 07:21:51 374

原创 Conda安装PyAudio全指南:解决跨平台兼容性与依赖冲突

在Python音频处理开发中,PyAudio的安装常因系统依赖和编译工具链问题失败。本文详解如何通过Conda环境管理工具,规避pip直接安装的兼容性陷阱,解决Windows/Linux/macOS三大平台的库链接错误。读者将掌握Miniconda虚拟环境配置、非官方渠道包编译技巧,以及FFmpeg等底层依赖的自动化处理方案。

2026-02-07 06:07:55 244

原创 LangChain搭建智能客服:从零开始的实战指南与避坑要点

“您好,请描述您的问题。”“转人工。”“对不起,我没有听懂。”这套对话模板几乎成了上一代客服机器人的标配。背后暴露的共性短板集中在三点:结果客服部门依旧被重复问题淹没,用户体验也谈不上“智能”。结论:想快速落地、又要保留“想改就改”的自由度,LangChain 对新手最友好。ConversationChain 把“输入→语言模型→输出→记忆”封装成一条流水线,默认已集成缓冲记忆(ConversationBufferMemory),开箱即用。通过 ChatOpenAI 接口接入 gpt-3.5-turb

2026-02-07 05:23:04 228

原创 大数据专业毕业设计Python实战:基于高效数据管道的效率提升方案

整个模板我放在 GitHub 私有库,同组同学直接git clone后只改 YAML 就能跑通自己的数据,省下的时间专心写论文而不是调 BUG。效率提升不仅指运行更快,更是让“改需求”不再心惊胆战——代码写得越懒,下班就越早。下一步我准备把 Polars 的 GPU 后端接入进来,再拿 Flink 做对比,看能不能把毕设做成实验室的长期 Demo。如果你也有类似折腾经历,欢迎交流踩坑心得。

2026-02-07 02:20:34 263

原创 ChatTTS Docker本地部署实战:从环境配置到性能优化

ChatTTS Docker本地部署实战:从环境配置到性能优化。

2026-02-03 01:16:47 308

原创 AI智能客服转接人工的实现机制与实战避坑指南

转接人工不是简单的“if 置信度 < 0.6 then transfer”,而是一套横跨状态一致性、实时事件流、资源竞争、降级策略的小分布式系统。把状态机画清、事件流存好、竞争锁做硬,基本就能扛住 90% 的线上坑。剩下的 10%,留给灰度发布和夜里的 On-Call 吧。祝各位上线不报警,查询无超时。

2026-02-02 01:09:13 615

原创 ChatGPT插件开发实战:如何通过自定义插件提升开发效率

差异的核心在于“调度权”:脚本只能等你手动触发,插件却能让 ChatGPT 在对话里直接帮你调接口、拿数据、发通知,把“人找机器”翻转为“机器找人”。每天 10:30,我都要把前一天的工单数据从 Jira 导出成 CSV,再跑 Python 脚本做聚合,最后把结果贴到飞书群公告。把上面的代码部署完,我直接把原来的 23 分钟缩短到 30 秒,同事只需在对话框里说一句“帮我统计昨日工单”,结果就自动飞到群里。,先灰度 5% 流量,再全量切换,可避免“一发布全站 502”的尴尬。

2026-01-31 01:52:08 320

原创 AI智能客服实现原理:从意图识别到对话管理的技术拆解

听起来简单,真正动手才发现,多轮对话里“上下文一丢、意图一歪”,用户立刻甩“转人工”。根据我们自己的埋点数据,意图识别准确率低于 85% 时,人工转接率直接飙到 45% 以上。于是,我把踩过的坑整理成这份笔记,从预处理到上线优化,一条线串起“AI客服”到底怎么让机器听懂人话、记住人话、还能回人话。也许答案不是“谁替代谁”,而是把规则当保险丝,模型当发动机——保险丝先熔断,发动机再熄火,系统才既快又稳。结论:BERT 贵 16 ms,但换来 5% 准确率,老板愿意多买两台 3060。

2026-01-31 01:37:27 354

原创 CiteSpace关键词突现操作实战:从数据清洗到可视化分析的高效路径

CiteSpace关键词突现操作实战:从数据清洗到可视化分析的高效路径写论文写到“研究热点演化”章节,最怕什么?不是不会跑 CiteSpace,而是——以上坑我踩过三轮,最后把全流程塞进 1 个 Jupyter Notebook,跑一遍 10 分钟搞定,手动操作从 2 小时起步直接降到 10 分钟,节省 80% 以上时间。下面把脚本、思路与避坑点全部摊开,照抄就能复现。

2026-01-31 01:31:55 253

原创 ChatTTS V3增强版技术解析:如何实现高保真语音合成与低延迟响应

在客服机器人、直播字幕朗读、车载语音助手等实时交互场景里,语音合成系统常被“延迟高”与“音质差”两头拉扯。传统自回归模型(如 WaveNet)虽然 MOS 高,但 RTF≈0.3,一句话说完 GPU 还在跑;纯并行方案(如 Parallel Tacotron)能把 RTF 干到 1.2,可 MOS 掉 0.5 分,用户明显听出“电子味”。更尴尬的是,中文多音字、语气词、突发噪声,让“流式输出”难上加难:要么等整句合成再播放,延迟 1 s+;

2026-01-31 01:30:47 335

原创 大数据专业毕设实战指南:从选题到可运行系统的完整技术路径

整套系统 3 台旧服务器 + 1 台笔记本,撑起了 100 万条/天的“电商黑五”流量,答辩现场 15 分钟 demo 零报错。毕设不是堆 Logo,而是把“数据采集→实时计算→存储→可视化”跑成一条闭环,再给出延迟、吞吐、一致性三项硬指标。你也能把这篇当模板,把电商换成校园一卡通、共享单车、甚至食堂排队,只要数据源真实、指标量化、能现场点鼠标,老师自然会给过。

2026-01-31 00:18:22 326

原创 实战指南:在Docker容器中部署ChatTTS并集成Dify的完整方案

实战指南:在Docker容器中部署ChatTTS并集成Dify的完整方案摘要:本文针对开发者在容器化环境中部署ChatTTS服务并与Dify平台集成时遇到的依赖冲突、性能调优和网络配置等痛点问题,提供了一套基于Docker的完整解决方案。通过分步指南和优化技巧,帮助开发者快速搭建高性能的语音合成服务,并实现与Dify的无缝对接。读者将掌握容器化部署的最佳实践,避免常见陷阱,提升服务稳定性和资源利用率。

2026-01-31 00:05:10 598

原创 CosyVoice 启动优化实战:从冷启动瓶颈到毫秒级响应

语音合成服务冷启动延迟是开发者面临的典型性能瓶颈。本文基于 CosyVoice 实战案例,剖析语音引擎初始化过程的性能陷阱,通过预加载策略、资源分级加载和并行化技术,将启动耗时从 2.3s 降至 200ms 内。读者将获得可直接复用的代码实现方案,以及针对移动端/服务端的差异化优化策略。

2026-01-31 00:02:26 369

原创 AI伴侣技术解析:从基础架构到多领域应用实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-25 02:47:30 321

原创 AI Chatbot Prompt 工程实战:从基础到高效优化

在开始今天关于的探讨之前,我想先分享一个最近让我觉得很有意思的全栈技术挑战。我们常说是未来,但作为开发者,如何将大模型(LLM)真正落地为一个低延迟、可交互的实时系统,而不仅仅是调个 API?从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 06:34:39 575

原创 NLTK安装与使用全指南:从环境配置到实战应用

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 01:53:47 328

原创 AI大模型项目三连炸:从开发到部署的避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-24 01:34:29 253

原创 Python实现AI语音助手的高效开发:从语音识别到响应优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 05:46:22 192

原创 AI语音聊天私有化部署实战:从架构设计到性能优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 05:42:40 362

原创 0.5b模型微调实战:从数据准备到生产部署的AI辅助开发指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 05:31:48 377

原创 Agent系统提示词中变量嵌入的实战指南:从原理到最佳实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 03:36:05 455

原创 AI伴侣不支持本地文件的实战解决方案:从数据隔离到安全访问

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 03:16:58 282

原创 Anaconda Prompt消失问题排查与AI辅助开发解决方案

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 03:11:10 487

原创 AI Agent本地部署实战:从零搭建豆包模型的避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 02:16:27 348

原创 Android端MNN模型部署实战:从直线检测到语音转换的避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 01:59:25 362

原创 AgentFly实战:无需微调LLM即可优化Agent性能的工程实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 01:31:56 353

原创 AI辅助开发:51单片机高效播放PCM音频的实战指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-23 00:57:09 638

原创 LLM实战应用全景解析:从模型选型到生产环境部署

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 06:00:07 353

原创 AI伴侣程序开发:从对话引擎到情感计算的技术实现

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 05:36:58 466

原创 Anaconda Prompt无法切换目录?解析cd命令失效的根源与解决方案

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 05:26:08 471

原创 Android WebRTC视频通话实战:从信令搭建到抗弱网优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 05:01:08 265

原创 Android AAC解码PCM实战:从MediaCodec到音频流处理的最佳实践

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 04:42:10 356

原创 Android平台编译LAME库实战:PCM转MP3的高效实现与避坑指南

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 02:45:51 352

原创 App端语音数据处理实战:高效转换PCM格式的技术解析与优化

基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。

2026-01-22 01:54:13 346

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除