- 博客(35)
- 收藏
- 关注
原创 Anaconda Prompt创建新环境:从基础操作到高级配置全解析
通过Anaconda Prompt管理虚拟环境可以显著提高Python开发效率和可靠性。轻松为每个项目创建独立环境快速复制和共享开发环境有效解决依赖冲突问题确保生产环境的稳定性如果你对实时AI应用开发也感兴趣,可以尝试从0打造个人豆包实时通话AI实验,体验如何将AI能力集成到实际应用中。这个实验会教你如何构建一个完整的语音交互系统,从语音识别到自然语言处理再到语音合成,非常值得一试。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-19 08:16:33
120
原创 API流式传输实战:如何在高并发场景下提升数据传输效率
/ 建议4KB-16KB分块基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”
2026-01-19 06:41:49
349
原创 Anaconda Prompt 路径解析与高效使用指南
Anaconda Prompt本质上是一个预配置了conda环境的Windows命令提示符。自动激活base环境预置了conda相关路径无需手动配置环境变量screenshot: 对比普通cmd和Anaconda Prompt的界面差异基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。
2026-01-19 05:21:42
334
原创 2022强网杯CTF强网先锋ASR赛题解析与自动化利用效率优化
设置最大活跃状态数(建议≤50)定期合并相似状态# Z3求解器配置模板solver.set("timeout", 3000) # 3秒超时solver.set("mbqi", True) # 启用模型基量化实例化使用Docker构建独立环境固定依赖版本(如angr==9.2.6)基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。
2026-01-19 05:18:23
93
原创 音频编码实战:AAC与PCM的核心差异与最佳应用场景
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-19 04:59:14
299
原创 基于AntV X6的AI电话机器人外呼流程设计器:从架构设计到性能优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-19 03:55:13
371
原创 AI辅助开发实战:如何优雅地在终端停止Anaconda Prompt运行
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-19 03:19:14
380
原创 深入解析AGP8 Moshi解析中的ClassCastException问题及解决方案
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-19 02:35:11
177
原创 Anaconda Prompt一直报错invalid syntax的实战排查与解决方案
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-19 02:23:13
160
原创 Anaconda Prompt无法打开的深度排查与解决方案
本文介绍的方法论同样适用于其他开发工具故障排查。建议定期备份,遇到复杂问题时可以尝试从0打造个人豆包实时通话AI实验中的环境重建技巧。实际操作中发现,90%的启动问题通过环境变量修复和组件验证即可解决。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。
2026-01-18 07:07:03
197
原创 AI养老伴侣‘小福’开发实战:从零搭建智能陪伴系统
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 06:43:12
241
原创 解决 -bash:ifconfig:command not found 的实战指南:从诊断到修复
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 05:48:52
204
原创 Arduino小智ESP语音识别实战:从硬件连接到语义解析的完整实现
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 04:51:05
218
原创 Android ASR实战:基于Vosk的离线语音识别方案与性能优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 04:45:19
169
原创 隐马尔科夫模型(HMM)在语音识别中的原理与实践
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 04:39:10
125
原创 AnythingLLM提示词优化实战:从基础到高效生产环境部署
本次优化实现了从基础实现到生产级部署的跨越。引入更精细的量化策略(如混合精度)尝试新型注意力机制(FlashAttention)探索模型并行以支持更大模型实现基于负载预测的自动扩缩容通过从0打造个人豆包实时通话AI实验,可以进一步实践这些优化技术在实时场景中的应用。我在实际测试中发现,这些优化策略能显著提升系统响应速度,即使是复杂提示词也能获得流畅的交互体验。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-18 04:08:21
216
原创 Anaconda Prompt创建虚拟环境显示通道出错:问题诊断与实战解决方案
通道错误是Anaconda使用过程中的常见问题,但通过系统化的诊断和正确的解决方法,大多数问题都可以快速解决。建立稳定的通道配置策略,团队内部统一配置定期清理conda缓存和更新conda本身对于重要项目,考虑将环境配置(environment.yml)纳入版本控制记录遇到过的通道问题及解决方案,形成知识库如果你有自己独特的解决方案或遇到过特殊的通道问题,欢迎分享你的经验。通过社区的力量,我们可以共同提高Python环境管理的效率和稳定性。对于想要进一步探索AI应用开发的读者,可以参考。
2026-01-18 03:44:25
224
原创 AI Prompt注入防御实战:从原理到工程化解决方案
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 02:13:52
294
原创 Android PCM转MP3实战:高效音频编码方案与性能优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 01:27:25
312
原创 Android实现VAD监听语音服务的实战指南:从选型到性能优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 00:43:13
244
原创 Android Studio代码提示失效问题深度解析与解决方案
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-18 00:13:37
332
原创 基于AI大模型的智能小车语音控制系统:从零搭建到性能优化实战
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-17 04:49:20
268
原创 AI论文阅读提示词:如何构建高效精准的学术文献解析系统
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-17 01:40:50
324
原创 本地部署AI伴侣:从模型选择到生产环境优化的全流程指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-17 01:39:34
243
原创 基于Vosk的Android语音助手开发实战:从模型集成到性能优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-17 00:42:07
601
原创 Arduino集成ESP ASR库实战指南:从环境配置到语音识别实现
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-16 06:54:12
249
原创 解决 ‘conda activate chattts 系统找不到指定的路径‘ 的完整指南:从环境配置到避坑实践
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-16 06:26:19
353
原创 基于AI Vox Engine的Arduino语音交互实战:从环境搭建到生产部署
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-16 05:29:32
310
原创 高效AI提示词设计:从原理到工程实践
避免歧义陷阱错误示例:"帮我处理数据"(什么处理?正确做法:"用Python pandas对sales.csv按月份分组计算销售额总和"敏感内容防护pythonBLACKLIST = ["暴力", "仇恨言论", "个人信息"]return "该问题不符合回答规范"版本控制为提示词添加版本号,便于AB测试:[v1.2] 2023-08-20 优化了产品推荐逻辑监控指标平均响应时间意图识别准确率用户满意度评分基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-16 03:52:37
303
原创 AI提示词入门实战:从零构建你的第一个智能对话系统
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-16 03:38:38
464
原创 iOS实战:如何通过SiriKit将App数据无缝接入Siri
首先需要在工程中添加SiriKit Capability,然后创建自定义Intent定义文件。// 定义查询订单的Intent// 在Info.plist中声明支持的短语<array></array>基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。
2026-01-16 02:33:17
249
原创 端到端视觉-语言Transformer训练实战:基于an empirical study的模型优化与部署指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-16 01:48:52
238
原创 Anaconda Prompt无法使用conda指令的排查与修复指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-16 01:35:13
305
原创 Arduino ESP32音乐转PCM实战:从音频解码到内存优化全解析
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-16 01:03:12
380
原创 AI提示词指令大全:从原理到高效实践指南
经过这些优化,我们的客服机器人响应时间从2.3s降到890ms,准确率提升到91%。建议尝试用轻量级提示词管理框架继续优化,下一步我准备实现自动提示词A/B测试功能。关键收获:- 短提示词不一定快,要看信息密度- 条件逻辑应该后置处理- 安全防护需要多层设计基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。
2026-01-16 00:41:54
5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅