- 博客(86)
- 收藏
- 关注
原创 ChatTTS 源码安装全指南:从环境配置到避坑实践
错误现象根因解决系统 CUDA 与 PyTorch 版本不一致用统一;或降级驱动混用 sudo pip全部装在虚拟环境,别加 sudo推理速度 < 0.1x 实时half_precision 未开 / 批次太小开,文本一次性喂 8-16 句真实场景 1:WSL2 用户音频设备找不到症状:播放时报解决:WSL2 本身不带声卡,需 Windows 侧装PulseAudio,再真实场景 2:笔记本双显卡,PyTorch 占满核显症状:推理卡顿,显存只占用 512 M。
2026-02-07 09:19:41
99
原创 NLP在智能客服系统中的实战入门:从基础架构到避坑指南
一路踩坑下来,最大感受是:NLP 不是“模型越fancy越好”,而是“数据→场景→迭代”闭环跑得越快,客服机器人才越像人。祝开发顺利,有问题评论区一起交流!痛定思痛,我才意识到:客服场景里“说法”无穷无尽,靠穷举规则根本覆盖不住。NLP 的价值就在于把“说法”抽象成语义,用模型而不是用 if-else 去“听懂”用户。压测结果:4 核 GPU 机器能到 800 QPS,latency P99 120 ms,满足客服高峰。这样就把“语言理解”与“业务事实”打通,准确率能从 90% 再提到 95% 以上。
2026-02-07 09:18:47
132
原创 ESP32毕设效率提升实战:从低效轮询到事件驱动架构的重构指南
ESP32毕设效率提升实战:从低效轮询到事件驱动架构的重构指南摘要:许多基于ESP32的毕业设计项目因采用阻塞式轮询、全局变量滥用或缺乏任务调度,导致系统响应迟缓、功耗高、调试困难。本文通过对比FreeRTOS任务模型与传统主循环架构,提出一套轻量级事件驱动方案,结合队列通信与中断处理,显著提升系统并发效率与资源利用率。读者将掌握可复用的模块化设计模板,降低代码耦合度,缩短开发周期,并为后续功能扩展打下坚实基础。
2026-02-07 09:08:50
203
原创 Java AI智能体客服:从架构设计到生产环境落地实战
Java 生态在 AI 时代依旧能打:借助虚拟线程、Spring AI、ONNX Runtime,我们让“笨重”的 Java 客服系统跑出了 Go 级别的延迟,同时保留了企业级可观测、可治理的优势。引入 Flink 实时聚合用户反馈,实现分钟级在线重训练。探索 GraalVM 原生镜像,把内存压到 80 MB 以内,适配 Serverless 场景。
2026-02-07 08:20:54
190
原创 智能宠物喂食毕业设计中的效率提升:从单片机调度到低功耗通信的优化实践
智能宠物喂食毕业设计中的效率提升:从单片机调度到低功耗通信的优化实践做毕设最怕“能跑就行”,可一旦把作品拿到答辩现场,老师一句“功耗多少?掉电怎么办?”就能让演示当场翻车。去年我带学弟做智能宠物喂食器,前后改了四版硬件,才终于把平均电流压到 1.3 mA,比第一版整整低了 60%。这篇笔记就把踩过的坑、测过的数据、跑通的代码一次性摊开,供还在熬夜焊板子的同学抄作业。
2026-02-07 08:03:18
188
原创 AI辅助开发实战:基于STM32的智能安全快递盒系统设计与实现
最深刻的体会是:AI 不是替你写论文,而是把“模板代码”和“API 拼写”这种脏活累活吃掉,让人专注在状态机、功耗、防破解这些真正值钱的思考上。祝烧录不报错,评审不翻车。RFID 选 RC522(SPI 接口,3.3 V 直驱),舵机选 MG90S(扭矩 1.8 kg·cm,5 V 单电源),振动传感器选 SW-420(数字量输出,带 LM393 比较器,便宜且不用 ADC)。最终“主控 + 通信”双芯片:STM32F411 做安全与实时控制,ESP-01S 仅做上报通道,掉电也不影响本地开锁逻辑。
2026-02-07 07:52:14
301
原创 使用 HTML、CSS 和 Bootstrap 构建含10个页面的前端毕业设计:实战架构与工程化实践
很多前端初学者在毕业设计里“页面一多就乱”,重复代码、响应式错位、后期改一行动全身。本文用纯 HTML/CSS/Bootstrap 技术栈,从 0 到 1 交付一个含 10 个页面的真实毕业项目,分享模块化组织、统一布局模板、语义化命名、无障碍与性能细节,并给出可直接套用的工程模板。读完即可动手复刻,也能无缝迁移到自己的校园作品或小型官网。
2026-02-07 07:35:10
299
原创 ChatGPT API 实战:从下载链接到生产环境部署的完整指南
本文基于我上周刚交付的内部工单助手,把从“拿到账号”到“灰度发布”踩过的坑,浓缩成一份可直接套用的 Checklist,让你少踩 6 个通宵。我亲自按文档敲了一遍,前后端模板、鉴权、流式返回都配好了,本地只需填三行密钥就能对话,小白也能顺利体验。走完上述流程,你就拥有了一个可灰度、可审计、可扩容的 ChatGPT 生产链路。以下示例用 Node 18 + Express 搭建 Gateway,语言不限,思想通用。至此,Gateway 已具备鉴权、限流、重试、流式返回,业务前端只需把。
2026-02-07 07:13:56
275
原创 ChatGPT API Key提取实战:从原理到安全实践指南
读完本文,你手里应该已经有一张安全生成的sk-...,它躺在 Secrets Manager 里,本地代码通过环境变量读取,CI 自动轮换,网关帮你限流。想亲手把这一套流程串起来,却又担心一步一坑?我最近在从0打造个人豆包实时通话AI动手实验里,把“申请密钥→加密存储→网络传输→日志脱敏”做成了可复制的模板,小白也能 15 分钟跑完。边学边改,边改边上线,让安全实践像自动补全一样自然。
2026-02-07 07:08:40
378
原创 Django毕业设计实战:从零构建高内聚低耦合的学术项目管理系统
"""允许函数级细粒度校验,比Django默认的model级权限更灵活。用法:在CBV中配置 permission_classes = [RoleBasedPermission]"""role = request.user.profile.role # profile为OneToOne扩展视图层只需声明,干净到像配置文件。
2026-02-07 07:07:03
340
原创 ChatTTS音色克隆实战:从零构建个性化语音合成系统
ChatTTS音色克隆实战:从零构建个性化语音合成系统摘要:本文针对开发者实现个性化语音合成的需求,深入解析ChatTTS音色克隆技术。通过对比传统TTS方案,详解声学模型微调、音色特征提取等核心实现,提供完整的Python代码示例和预训练模型调优技巧。读者将掌握低延迟推理优化、多说话人适配等生产级解决方案,并获取避免音色泄露和版权风险的实践指南。
2026-02-07 04:58:55
305
原创 计科毕业设计效率提升实战:从重复造轮子到工程化开发的跃迁
走完上面流程,你会发现“写代码”只占整体工时的 40%,剩余时间可以真正去思考算法对比、实验设计、PPT 故事。更关键的是,这套模板可直接迁移到实习项目、研究生课题,甚至创业 Demo——它让你第一次体会到“工程能力”不是 Spring、不是 K8s,而是“让任何新成员五分钟能跑起来”的底气。现在,打开你的旧代码,新建一个分支,把配置、日志、路由一点点拆进去;每完成一个模块就commit一次,跑通测试后推到 GitHub。
2026-02-07 02:24:27
293
原创 物联网毕设数据集实战:从采集到可视化的一站式处理方案
做毕设最怕什么?不是不会写代码,而是。我去年带学弟做“基于温湿度的智能空调联动”课题,光找数据就折腾两周:网上下的 CSV 缺时间戳,自己拿 Excel 补,补完发现单位不统一,最后答辩被老师一句“数据可信度如何?”直接问懵。痛定思痛,我干脆搭了一套“能跑起来”的迷你数据管道,把一次性打通,今天把整套笔记公开,,别再重复造轮子。。
2026-01-31 01:14:45
208
原创 国内电商平台AI智能客服架构设计与性能优化实战
国内电商平台AI智能客服架构设计与性能优化实战秒杀开始 0.3 秒,客服并发瞬间飙到 8 w QPS,意图识别服务直接 502;广东用户一句“唔该退货”被当成“无故退货”,机器人答非所问;多轮对话里上一句还在谈优惠券,下一句就跳到开发票,状态机直接“失忆”。去年双 11 我们就是在这样的“炮火”里把系统一点点啃下来的。今天把踩过的坑、调过的参、写过的代码全部摊开,给中级开发同学当一份“避坑地图”。
2026-01-31 01:09:17
381
原创 STM32心率监测毕设实战:从传感器选型到低功耗架构设计
STM32心率监测毕设实战:从传感器选型到低功耗架构设计做毕设最怕“看起来简单,一动手就翻车”。心率监测项目尤其如此:传感器一上手腕,波形全是毛刺;跑个滤波,MCU 直接睡死;好不容易把数据稳住,电池半天就报警。下面把我自己踩过的坑、调通的代码、验证过的低功耗策略,按“从信号到电量”的顺序拆给你看,照着做至少能把 demo 撑到答辩现场不掉链子。
2026-01-31 00:38:04
354
原创 Allegro PCB设计实战:Bot层元件放置的最佳实践与避坑指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-25 02:21:10
369
原创 Android音频开发实战:如何高效抓取PCM dump数据
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 07:24:34
739
原创 H5即时通讯群聊系统实战:从源码解析到无限建群架构设计
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 06:43:07
609
原创 Android端SenseVoice部署实战:从环境搭建到语音识别集成
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 06:01:56
309
原创 AI视频图片模型技术解析:从基础原理到生产实践
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 02:23:24
225
原创 FunASR WSS Server 2Pass 错误解析与实战避坑指南
遇到错误时,不要慌张。按照本文的排查步骤,从路径、权限、依赖到环境变量逐一检查,大多数问题都能快速解决。如果你有更好的解决方案或优化建议,欢迎在评论区分享。对于想进一步探索语音识别技术的开发者,可以尝试从0打造个人豆包实时通话AI动手实验,亲身体验构建完整语音交互系统的乐趣。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。
2026-01-24 02:08:45
395
原创 基于GitHub构建AI Bot消息系统的效率优化实践
通过本文介绍的方法,我们成功构建了一个高效、可靠的GitHub AI Bot消息系统。使用消息队列解耦接收和处理异步化所有耗时操作合理配置工作进程数量如果你正在构建类似的系统,不妨尝试从0打造个人豆包实时通话AI实验,它提供了完整的实时AI交互实现方案。在实际操作中,我发现它的异步处理架构设计特别值得借鉴,能够轻松应对高并发场景。欢迎在评论区分享你的优化经验或遇到的问题,我们可以一起探讨如何进一步提升系统性能!基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-24 00:53:33
579
原创 AI大模型语音转文字实战:从技术选型到生产环境部署
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 00:37:17
882
原创 AI语音助手技术选型指南:从架构设计到性能优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 05:24:47
802
原创 Anaconda Prompt缺失问题排查与替代方案实战指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 03:58:27
653
原创 基于ResNet的短视频关键帧特征提取实战:从模型选型到生产部署
关键帧采样黄金法则对话类视频:每2秒采样(避免遗漏说话人切换)快剪类视频:按1%总帧数均匀采样运动剧烈场景:结合光流法动态调整采样率特征维度爆炸应对先进行特征重要性分析(PCA方差解释率)采用分段降维策略(2048→1024→512)对分类无效的维度强制归零显存不足逃生方案try:features = cpu_model.extract(batch) # CPU后备模型基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-23 03:06:18
658
原创 311-1SA网络盒子AI语音助手选型与部署实战指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 03:01:33
800
原创 开源AI伴侣系统架构解析:如何实现高效对话与情感计算
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 01:08:19
278
原创 基于Prompt Engineering的心理治疗图像生成实战:方法与优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 00:35:33
780
原创 AI辅助开发实战:基于开源AI伴侣的代码生成与优化
AI辅助开发正在改变我们编写软件的方式,开源AI伴侣工具为开发者提供了强大的助力。通过本文介绍的方法,你可以显著提升开发效率,同时保证代码质量。建议从小的实验项目开始,逐步将AI伴侣集成到你的工作流中。如果想体验更完整的AI开发辅助,可以参考从0打造个人豆包实时通话AI动手实验,该实验提供了端到端的AI应用开发体验。在实际使用中,我发现其代码生成和优化建议非常实用,特别是处理复杂业务逻辑时能提供有价值的参考实现。期待看到更多开发者分享他们的优化经验和创新用法。
2026-01-22 06:26:05
520
原创 AI大模型入门:从零构建你的第一个生成式模型
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-22 04:32:17
329
原创 实战解析:如何构建高防爬的 anti bot scraping 系统
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-22 04:19:19
361
原创 Apache 支持 WebSocket 的实战指南:从配置优化到生产环境避坑
通过合理配置 Apache 的 WebSocket 支持,我们可以构建高性能的实时应用。小规模应用:直接使用 mod_proxy_wstunnel大规模实时系统:考虑专用 WebSocket 集群特殊协议需求:可能需要自定义模块开发如果你想更深入地学习实时通信技术,可以尝试从0打造个人豆包实时通话AI动手实验,这个项目会带你完整实现一个实时语音对话系统,包括 WebSocket 通信、语音识别和合成等核心技术。我在实际操作中发现,通过这种端到端的实践,能更好地理解实时通信的技术细节和优化方法。
2026-01-22 04:10:46
226
原创 AI、NLP与LLM:从理论到实战的深度解析与应用指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-21 07:00:17
316
原创 AI语音及交互测试套件实战指南:从环境搭建到性能调优
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-21 05:44:29
351
原创 Android Studio集成百度AIP语音识别实战:从接入到性能优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-21 05:38:58
437
原创 Amazon Web Services Generative AI Certificate 深度解析:从认证流程到实战应用
生成式AI正在重塑技术行业的格局,从内容创作到代码生成,再到个性化推荐系统,其应用场景不断扩展。AWS作为云计算领域的领导者,推出的Generative AI Certificate认证为开发者提供了系统掌握这项技术的路径。技术趋势:生成式AI模型如GPT、Stable Diffusion等已从研究实验室走向企业生产环境,2023年相关市场规模增长超过300%企业需求:据AWS官方调研,73%的企业计划在未来两年内部署生成式AI解决方案,但面临人才短缺问题认证价值。
2026-01-21 03:34:51
368
原创 AI关键词提取实战:从算法选型到生产环境部署
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-21 02:29:09
298
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅