- 博客(90)
- 收藏
- 关注
原创 ChatGPT与DeepSeek实战入门:从模型原理到API集成避坑指南
在金融和电商这类对实时性和准确性要求极高的领域,引入大语言模型(LLM)来处理客服问答、内容生成或数据分析,已经成为提升效率的利器。然而,当团队决定同时接入像ChatGPT和DeepSeek这样的主流模型,试图通过混合调用来实现性能、成本或效果的最优解时,一系列现实的挑战也随之而来。我跟着做了一遍,流程清晰,代码也直接能跑,对于理解现代AI应用的整体架构特别有帮助,尤其是想体验“端到端”集成感觉的朋友,可以试试看。方法会返回所有成功调用的结果列表。首先,定义一个基础的模型调用客户端,集成指数退避重试机制。
2026-02-09 01:19:51
360
原创 AI辅助选题:电子工程毕业设计选题的智能推荐与开发流程优化
AI 不是来替你写论文的,它只是把“翻 300 页 PDF”压缩成“喝一口咖啡”的时间。真正的价值在于,让你把精力从机械检索转移到动手调板子、测数据、挖创新。下次进实验室前,先花 10 分钟跑一遍脚本,把生成的候选选题贴在白板上,再用示波器和烙铁去验证——当原型灯珠第一次亮起,你会庆幸自己没把夜晚浪费在“搜选题”上。祝你基于手头的 STM32 或树莓派,定制出专属的选题代理,把毕业设计做成一件能放进简历的“硬核作品”。
2026-02-07 09:20:06
265
原创 实战指南:如何用C++构建高效语音助手插件(附主流方案对比)
我的做法是动态降采样:检测 CPU 温度 > 75 °C 时,把识别帧长从 20 ms 提到 30 ms,CPU 占用立刻降 18 %,用户几乎察觉不到精度损失。我亲自跑过一遍,脚本把火山引擎的 ASR、LLM、TTS 全套 token 都准备好了,本地只写几十行代码就能跑通,比自己搭积木省事太多。下面这段代码是我从生产环境摘出来的“最小可运行骨架”,C++17 标准,clang-format 宽度 100,用 RAII 把 PortAudio 的。把这三件事同时解决,才算摸到“能用”的门槛。
2026-02-07 07:06:10
125
原创 毕业设计外文翻译:基于机器翻译与人工校对协同的技术实践指南
面向计算机专业本科生的技术科普,用最小可行代码把“读英文 PDF”变成“可校对的中文段落”,兼顾隐私、成本与可复现性。
2026-02-07 06:07:45
155
原创 ComfyUI实战:如何利用目前最好的生图生视频大模型优化创作流程
从 WebUI 切到 ComfyUI,最大的感受是“终于可以把 Diffusion 当 API 用了”。节点式拆图让算法、工程、运营各管各的,工作流 JSON 就是一份可版本化的“产品文档”。如果你也在为“生图慢、视频贵、质量玄学”头疼,不妨拉镜像跑一遍上面的 client.py,改两行 prompt,就能体会 4× 提速的爽感。下一步我准备把 LoRA 动态加载、ControlNet-Tile 超分、RIFE 插帧再串进同一条流,目标 2 k→8 k 条/天,单卡成本再砍一半。
2026-02-07 05:03:44
212
原创 基于Coze的Agent智能客服项目:从架构设计到性能优化实战
当同一用户先在小程序咨询,又拨 400 电话,再切到 App 聊天,如何保证客服视角只有一条连续会话,且状态不丢、路由不冲突?高峰期只要出现 10% 的长尾请求(用户一句话要查 5~ 个外部接口),整个线程池就被打满,后续请求排队 3 s 以上,客服同学疯狂截图吐槽。更尴尬的是意图识别模块:规则正则+关键词权重,准确率 72%,每天人工纠偏 1 200+ 单,运营直接甩 KPI 给技术部。整套方案已在 3 月内全量切流,目前稳定承载日均 80 万对话,峰值 3 k QPS,客服人力节省 35%
2026-02-07 04:46:50
191
原创 ChatGPT下载与CSDN资源获取:新手避坑指南与技术实践
本文针对新手开发者在获取ChatGPT相关资源时遇到的CSDN下载难题,提供了一套完整的解决方案。从官方渠道验证到安全下载实践,详细解析如何避免常见陷阱,并附有Python自动化脚本示例,帮助开发者高效、安全地获取所需技术资源。
2026-02-07 03:46:59
281
原创 智能客服问答系统实战:基于AI辅助开发的高效架构设计与避坑指南
把规则、深度模型、异步架构按“三明治”方式叠在一起后,系统 P99 延迟从 2.1 s 降到 380 ms,意图准确率由 85 % 提到 94 %,运维人天从每月 30 h 降到 5 h。解决:在 tokenizer 阶段加入 5 k 领域词做 Whole Word Masking,再训练 MLM 1 w 步,然后接下游意图任务,准确率回升 3.8 %。对中小团队来说,先用 BERT 解决“准”,再用 Kafka 解决“快”,最后用缓存解决“稳”,是当下性价比最高的落地路径。
2026-02-07 03:28:48
170
原创 ChatGPT使用攻略:从API集成到生产环境最佳实践
我跟着做了一遍,把 ASR+LLM+TTS 整条链路跑通只花了俩小时,源码直接丢进现有工程就能用,对需要语音场景的产品经理们简直不要太友好。下面把踩坑笔记整理成可复制的代码,帮你在生产环境把延迟降 30%、成本降 40%,还能睡个安稳觉。tracker 还可在 Redis 里累加 user 级消费,做“余额不足”提示,防止恶意刷量。把上面模块串起来,你就拥有了一个可灰度、可观测、可省钱的 ChatGPT 对话服务。透传,就能实现“逐字蹦字”效果,实测 QPS 100 时延迟稳定。
2026-02-07 03:26:48
363
原创 基于YOLOv的毕业设计Web系统:从模型部署到推理效率优化实战
基于YOLOv的毕业设计Web系统:从模型部署到推理效率优化实战摘要:许多学生在毕业设计中使用YOLOv系列模型构建Web应用时,常陷入推理延迟高、资源占用大、前后端耦合紧等效率瓶颈。本文聚焦效率提升,详解如何通过模型轻量化、异步任务队列与Flask/FastAPI合理选型,构建低延迟、高吞吐的YOLOv Web服务。读者将掌握端到端优化策略,显著提升系统响应速度与并发处理能力。
2026-02-07 03:06:46
295
原创 基于RAGFlow的智能问答客服系统:从架构设计到生产环境部署
传统客服系统常被“响应慢、知识更新滞后”困扰,纯LLM方案又贵又不可控。本文用一次真实上线过程,拆解如何基于RAGFlow搭一套“实时检索+生成”的智能问答客服,给出可直接落地的Python代码、并发优化与零停机更新方案,并分享踩坑记录。适合已玩过向量库、正准备上生产的中高级开发者。
2026-02-07 02:56:14
262
原创 本科毕业设计计算机实战指南:从选题到部署的全链路技术实践
本科毕业设计计算机实战指南:从选题到部署的全链路技术实践摘要:很多计算机专业的同学把毕业设计当成“交作业”,结果需求越写越膨胀、代码越写越乱、答辩越讲越心虚。本文用“实战”视角,带你把毕设当成一个小型商业项目:从选题边界划定,到 FastAPI+Vue3+SQLite 全栈落地,再到一键部署上线。全部代码可直接跑通,注释比论文还细,复制粘贴即可用。
2026-02-07 02:32:00
232
原创 恶意URL检测实现毕业设计:基于规则与轻量模型的高效检测架构
把“检测恶意链接”做成毕业设计,听上去高大上,真动手才发现——,笔记本风扇一响,整个人都不好了。。如果你也卡在性能瓶颈,直接抄作业即可。
2026-02-07 01:29:03
364
原创 Dify 智能客服提示词实战:从零构建高效对话系统的避坑指南
过去一年,我至少参与了 5 个智能客服项目的救火。最惨的一次,用户一句“我要退钱”被误判成“我要推荐”,结果触发商品推荐接口,连呼三次“不满意”后直接流失。复盘发现,80% 的客诉都能追溯到同一块短板——提示词(Prompt)设计。痛点总结:提示词不仅是一段“文案”,更是整个对话系统的路由表。路由表写错,流量直接走到错误的服务,雪崩随之而来。
2026-02-07 01:16:28
386
原创 AI 辅助开发实战:从零构建毕业设计级 CTF 平台
AI 辅助工具(GitHub Copilot / CodeWhisperer)恰好能在“思路”和“样板”两个维度拉我们一把:既给出可落地的代码骨架,也随时提醒安全默认值。用 AI 辅助不是让工具替你写完整项目,而是把“样板、提醒、漏洞检测”三件事自动化,让你把有限时间花在架构与安全思考上。希望这篇笔记能帮你把毕业设计级别的 CTF 平台从“能跑”提升到“能扛”,顺利通过答辩,也欢迎你在 GitHub 上 @ 我交流更多自动化部署的新玩法。每道题提供独立容器镜像,平台只负责“启/停/回收”。
2026-02-07 01:06:25
361
原创 CosyVoice 300M模型推理速度优化实战:从理论到生产环境部署
CosyVoice 300M 模型推理速度优化实战:从理论到生产环境部署把 300M 参数的 CosyVoice 从“能跑”变成“跑得飞快”,我只踩了三个坑,却总结了六条能直接抄作业的优化套路。下面把全过程拆开聊,顺带把 PyTorch 代码、AWS 实测数据、OOM 逃生指南一并打包给你。
2026-01-31 02:03:39
239
原创 基于Dify构建高可用智能客服系统的架构设计与实战
过去两年,我先后维护过两套“祖传”客服系统:一套基于正则+关键词,另一套用 Rasa 2.x 做意图分类。再加上团队主力语言是 Python,Dify 的后端开源(Go+Python)对我们二次开发也很友好。经过 4 个月运行,我们的大模型账单下降了 42%,核心靠“缓存 + 小模型兜底”。全程拖拽 10 分钟,支持一键 A/B:把流量按 20% 切到新版本,灰度观察。我们线上采用“滑动窗口 + 业务完结即删”混合策略,内存占用降低 35%。新活动上线时,知识库为空,模型容易“胡说”。
2026-01-31 02:03:32
276
原创 基于LangGraph的多Agent协作智能客服系统:架构设计与工程实践
nodes.py"""Routing Agent:零样本意图分类""""""Domain Agent:精准回答""""""Fallback Agent:安全兜底"""state["answer"] = "抱歉,我还在学习中,请联系人工客服。
2026-01-31 02:00:26
251
原创 从零构建智能客服系统:基于n8n的自动化流程设计与实战
本文针对中小团队快速搭建智能客服系统的需求,详解如何利用n8n低代码平台实现客服自动化。通过Webhook接入、对话路由设计、知识库集成三大核心模块,开发者可在2小时内完成从需求分析到生产部署的全流程,同时获得消息去重、会话状态维护等企业级功能实现方案。
2026-01-31 01:45:55
620
原创 CentOS7部署ChatGPT实战指南:从环境配置到性能优化
整套流程跑下来,我最大的感受是:CentOS7 虽然旧,但只要用对容器和量化,它依旧能跑出漂亮的延迟曲线。文章里所有命令都经过线下反复重装验证,复制粘贴即可用。如果你也想亲手把大模型装进自己的服务器,却又担心无从下手,不妨先试试这个动手实验——从0打造个人豆包实时通话AI。实验把 ASR→LLM→TTS 整条链路拆成 7 个闯关任务,小白也能 30 分钟跑通;我跟着做完后,直接把 ChatGPT 语音版接进了公司客服系统,效果出乎意料地顺滑。祝你玩得开心,有问题随时交流!
2026-01-31 01:34:12
219
原创 基于HuggingFace构建智能客服系统的架构设计与避坑指南
再升级一点,用浅层 ML(FastText、TextCNN)做意图分类,却发现在多轮场景里状态维护全靠人工堆字段,上一句改地址、下一句问运费,上下文一乱,模型立刻“失忆”。先解决“听明白”问题。希望这份笔记能帮你少走点弯路,也欢迎把你们的独门技巧甩过来,一起把智能客服做得再“傻”一点,让用户真正感觉不到 AI 的存在。更尴尬的是,业务方突然要求支持英语+粤语,重新标注数据+重新训练,两周过去了,市场窗口早关了。模型上线后,北方用户打“快递到哪了”没问题,华南用户却爱写“快递去边度”“货到咩时候”。
2026-01-31 01:07:21
262
原创 ChatTTS 一键本地安装实战指南:从环境配置到避坑全解析
本文针对开发者在本地部署 ChatTTS 时常见的环境依赖冲突、模型加载失败等痛点问题,提供了一套经过生产验证的一键安装解决方案。通过容器化封装和依赖隔离技术,开发者可在 5 分钟内完成从零部署到语音合成 API 调用的全流程,并附赠 GPU 加速配置技巧与常见错误排查手册。
2026-01-31 01:01:07
319
原创 AI辅助开发实战:基于机器学习的医疗检测毕业设计全流程解析
再换成自己的数据路径,你会发现:原来 12 周的毕设,可以留 4 周来写故事、做可视化、甚至提前实习。下一步,不妨把皮肤癌或眼底病变检测的公开地址贴在 README,让下一届同学继续“站在你的肩膀上”少踩坑。学术与工程之间的断层,让“高分论文”和“能跑 demo”变成二选一。AI 辅助开发思路,就是把“能跑”做成默认项,把“高分”做成加分项。做“机器学习+医疗检测”毕设,像同时打三份工:数据工人、调参工人、运维工人。结论:毕设周期 12 周,Lightning 把“写训练框架”压缩到“写研究逻辑”。
2026-01-31 00:40:00
338
原创 从零构建Amphion Flow Matching模型:实现300%语音转换效率提升的实践指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-25 02:27:49
342
原创 Android VAD集成实战:AI辅助开发中的音频流处理优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-25 02:11:00
310
原创 Android音频低延迟技术解析:从原理到实践优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-25 00:42:48
944
原创 Android音频PCM数据加窗处理实战:从算法选型到性能优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 05:54:40
838
原创 OpenAI Prompt Engineering 实战指南:从基础原理到生产环境优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 04:49:08
219
原创 AI伴侣Duix在开发效率提升中的实战应用与架构解析
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 04:35:33
376
原创 AI视频模型训练入门指南:从数据准备到模型部署的全流程解析
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 03:44:27
250
原创 AE AI语音助手动画开发实战:如何提升制作效率与交互体验
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 02:47:20
315
原创 Anaconda安装后找不到Prompt的解决方案:环境变量配置与终端集成指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 01:41:23
339
原创 Anaconda Prompt找不到的终极解决方案:环境变量配置与效率提升指南
通过本文的解决方案,你应该已经能够解决Anaconda Prompt找不到的问题,并掌握了环境配置的核心技巧。按照步骤实际操作一遍环境变量配置尝试创建和管理几个不同的conda环境将常用conda命令整理成备忘单分享你的配置经验给团队其他成员良好的开发环境配置是高效编程的基础。掌握了这些技巧后,你可以把更多精力集中在实际开发工作上,而不是被环境问题困扰。如果你想进一步探索AI开发环境配置,可以参考这个从0打造个人豆包实时通话AI动手实验,里面有很多实用的环境配置和AI开发技巧。
2026-01-24 00:02:54
797
原创 Android开发实战:通过三方框架高效实现语音交互与语音点歌功能
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 05:23:44
756
原创 Android 11 TTS 性能优化实战:从延迟优化到内存管理
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 04:06:48
661
原创 Anaconda Prompt无法启动conda的故障排查与解决方案
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 02:20:49
389
原创 AI辅助全栈开发实战:基于Cursor与大模型的医疗专家订阅App零代码实现
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 01:43:13
364
原创 AI语音交互盒是什么:从原理到生产环境部署的实战指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-22 05:58:59
828
原创 Mumu模拟器连接App Inventor AI伴侣码的实战指南与性能优化
通过上述优化方案,我在实际项目中将连接稳定性提升了70%,调试效率提高了3倍。建议开发者定期更新模拟器和伴侣应用,以获得最佳体验。想进一步探索AI应用开发?可以尝试从0打造个人豆包实时通话AI动手实验,体验完整的语音交互开发流程。这个实验我亲自尝试过,从环境搭建到功能实现都有详细指导,特别适合想快速入门AI语音交互的开发者。你在连接过程中遇到过哪些独特问题?或者有更好的优化建议?欢迎在评论区分享你的实战经验。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-22 03:47:43
358
原创 Android语音助手开发实战:从UI设计到语音交互实现
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-22 02:59:32
329
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅