- 博客(88)
- 收藏
- 关注
原创 ChatTTS 在 Linux 环境下的高效部署实战与避坑指南
最近在项目中需要集成一个高质量的语音合成服务,经过一番调研,最终选择了 ChatTTS。它以其自然流畅的合成效果和不错的可定制性吸引了我们。然而,当真正要在 Linux 生产服务器上部署时,才发现从“跑起来”到“稳定高效地跑起来”之间,还有不少坑要填。今天就把这次从零到一的部署实战,以及过程中积累的避坑经验,整理成笔记分享给大家。
2026-02-11 01:11:39
322
原创 ChatTTS 最新版本下载与高效集成实战指南
通过实现一个带有多线程下载和智能缓存的管理模块,我们成功地将 ChatTTS 最新版本的获取和集成过程从一项“体力活”变成了自动化、高效率的流程。这不仅节省了宝贵的开发时间,也使得项目部署更加稳定可靠。这套思路其实不仅适用于 ChatTTS,对于其他需要下载大型模型文件或数据集的AI工具(如 Stable Diffusion、各种 Hugging Face 模型)都有借鉴意义。你可以将这个下载器模块抽象化,通过配置来支持不同的模型源。如何对生成的语音进行更精细的控制(语速、语调、情感)。
2026-02-09 01:11:45
273
原创 智能农业中的生成式AI:2025年4月Call for Papers技术前瞻与落地实践
以上,就是赶在 Call for Papers 02 April 2025 前,一份“能跑、能部署、能投稿”的生成式 AI 农业实践笔记。单纯用 CNN 做图像分割,无法把“气象上下文”编码进去,结果把“干旱胁迫”误判为“氮缺乏”。生成式 AI 的价值:用“合成数据”补全缺失、“生成式模拟”提前推演作物长势,再把模型压到 1/10 体积,在边缘端 300 ms 内给出决策。农业场景最看重“实时+鲁棒”,因此我们选 Diffusion 做数据增广,GAN 做前端病害样本,VAE 当 baseline 对比。
2026-02-07 09:32:23
315
原创 AI辅助开发实战:基于铁路通信毕设的智能调度与故障预测系统设计
AI辅助开发实战:基于铁路通信毕设的智能调度与故障预测系统设计做铁路通信毕设,最怕的不是写不出代码,而是“真实现场”一上来就给你三闷棍:这三点叠加,导致 90% 的毕设组把精力耗在“找数据”而不是“做算法”。AI 辅助开发的第一步,就是承认这些痛点,然后用工具链把脏活累活自动化,让大脑留在模型本身。铁路网管大多只开 SNMP v2c,字段命名随意。用 先批量拉原始 OID,再写一张 20 行的 YAML 映射表,把 、、 翻译成统一标签,落盘成 Parquet。30 秒一轮,单节点日增 60 MB,毕设笔
2026-02-07 07:01:49
233
原创 Python计算机毕业设计项目避坑指南:从选题到部署的工程化实践
选题小步快跑,技术栈宁缺毋滥代码分层、配置外置、日志齐全,让项目离开你的电脑也能活Docker一键部署,老师笔记本秒起服务,答辩现场不再尴尬当你能把“跑通”变成“可维护”,把“演示”变成“可扩展”,这份仓库就不再是作业,而是作品集的第一行亮色。祝你编码顺利,答辩高分,也祝下一个Star来自未来的同事。
2026-02-07 05:56:53
231
原创 ChatTTS 文件存储路径修改实战:从配置到生产环境避坑指南
把模型跑起来只用了 5 分钟,把文件写到正确地方却折腾了 3 小时——如果你也踩过 ChatTTS 默认路径的坑,这篇笔记应该能救你一回。
2026-02-07 05:35:15
263
原创 ChatTTS采样后SPK失效问题解析与解决方案
把SPK向量真正“钉”在diffusion模型里,就能解决采样后声线漂移的老毛病。顺着这个思路,这些同样在后处理阶段被清零的参数,也能用相同套路锁定。下一步我准备把spk与emotion做联合插值,看能不能让角色在“喜怒哀乐”之间平滑过渡,而不出现音色撕裂。如果你也踩过类似的坑,或者有更优雅的显存优化方案,欢迎一起交流,让ChatTTS的玩法再厚一点。
2026-02-07 04:53:01
271
原创 AI 辅助开发实战:基于卷积神经网络毕业设计的高效实现与部署指南
AI 辅助开发实战:基于卷积神经网络毕业设计的高效实现与部署指南一句话总结:把“调参→训练→部署”这条最耗时的毕业设计流水线,交给 AI 工具去做脏活累活,我们只盯核心逻辑与实验结论,两周就能交差。
2026-02-07 04:37:17
305
原创 智能客服集成实战:如何将自己开发的智能客服无缝结合到现有产品中
把自研客服搬进产品线,本质是“边开飞机边换引擎”:先让老系统无感过渡,再逐步替换核心链路。建议读者按本文示例,先跑通“创建会话→发送消息→接收回答”最小闭环,压测 500 并发,观察 RT 与错误率;接着把 WebSocket 推流加上,实现“机器人正在输入…”的实时体验;最后思考多轮对话的槽点——例如用户说“我要退掉昨天的订单”,机器人需要追问“哪一笔”、展示订单卡片,这背后就要把“对话状态机”与“业务实体”打通,用 DSL 描述槽位填充与函数调用,才能真正做到“无缝”。引入强化学习做动态话术排序;
2026-02-07 04:09:42
241
原创 数据科学与大数据技术毕业设计系统设计与实现:新手入门实战指南
整套系统从 0 到可演示只花了一个周末,内存占用 6 G 以内,笔记本风扇不转。毕设不是造火箭,先让数据“跑起来、看得见、能点烂”,再谈高并发和 Exactly-Once。希望这条最小路径能帮你把精力留给写论文、而不是调环境。下一步,不妨把告警阈值做成可配置,想想如果金额异常突增,系统该怎么保证短信接口不狂轰滥炸——“让数据不仅动,还动得安全”,这才是毕业设计真正的加分项。
2026-02-07 04:05:30
278
原创 基于AI大模型的智能客服实战:从架构设计到生产环境部署
我们曾统计过,某电商大促期间,规则客服的意图识别准确率从 92% 跌到 74%,人工溢出率飙升至 38%,直接拉垮履约时效。虽然大模型也能 zero-shot,但为了让 3.5 更“省 token”,我们先用小模型兜底,top-1 置信 < 0.8 再走大模型。大模型按 token 计费,我们把“用户重复句”“系统重复句”做 CRC32 去重,再用摘要模型二次压缩,平均节省 32% token。压测环境:Gunicorn + FastAPI,4 核 8 G,GPU T4*1,并发 200。
2026-02-07 03:24:07
312
原创 深入解析ChatTTS WebUI & API(v0.84):从技术原理到生产环境部署
ChatTTS v0.84 把“开源 TTS”的工程门槛一次性拉到及格线以上:一键镜像、流式接口、批处理、情绪控制,全部开箱即用。经过三个月线上验证,我们客服机器人的平均响应从 1.2 s 降到 0.3 s,GPU 成本节省 42%,真正做到了“便宜又好用”。多卡并行:目前单卡 150 路就到顶,下一步试用 TensorRT + 多卡流水线,把显存墙再往后推。模型蒸馏:官方 500 M 参数,目标压缩到 200 M 以内,CPU 也能跑,边缘场景落地。VAD 级联。
2026-02-07 01:02:50
293
原创 智能客服agent应用设计实战:从架构设计到性能优化
代码已开源在内部 Git,如果你也在踩高并发客服的坑,不妨把状态机模板拿去改两行业务规则,先让机器人别再“失忆”,再慢慢上大模型,迭代会更踏实。通过 LoRA 微调 + 强化学习,把企业私有知识灌进去,两周就能把退货政策、订单条款“背”下来,准确率再提 3%,同时减少 40% 人工标注。混合模式虽香,仍要人工标注规则。现象:用户说“我不是不满意”,规则同时命中“满意→结束”和“不满意→转人工”,状态机来回横跳。现象:服务器 UTC,前端东八区,重启后把“updated_at”误读,直接判超时。
2026-01-31 02:07:35
403
原创 ChatGPT无法复制的技术解析:构建专属AI助手的实战指南
许多开发者尝试复制ChatGPT的能力却屡屡碰壁。本文深入分析ChatGPT无法简单复制的技术壁垒,并提供一套基于开源模型的实战方案,帮助开发者构建具备类似能力的专属AI助手。你将学习到模型微调、知识蒸馏等关键技术,以及如何规避常见性能陷阱。
2026-01-31 01:47:17
408
原创 基于CNN的语音活动检测(VAD)实战:从算法原理到生产环境部署
语音活动检测(VAD)在实时语音处理中至关重要,但传统方法在复杂噪声环境下准确率低、计算开销大。本文详细介绍如何利用CNN实现高精度VAD,包括模型架构设计、TensorFlow/Keras实现、以及生产环境中的优化技巧。读者将掌握端到端的VAD解决方案,在保持95%+准确率的同时将推理延迟降低至10ms以内。
2026-01-31 01:19:13
377
原创 2025年医学信息工程毕业设计Python实战:基于FastAPI与异步任务队列的效率提升方案
raise ValueError("信号不能全为 0")return v前端多传一个字段?直接 422,拒绝解析,调试时间省一半。
2026-01-31 01:05:24
302
原创 基于Django的毕业设计实战:从项目搭建到部署上线的完整闭环
"""统一用户模型,后续可扩展手机号、微信openid等字段"""mobile = models.CharField(max_length=11, blank=True, verbose_name="手机号")verbose_name = "用户""""注册接口,只开放 POST,无需鉴权"""注册序列化器里把密码写成write_only,再调用做哈希,杜绝明文。
2026-01-31 00:44:03
397
原创 AI 辅助开发实战:基于工业智能毕设的高效开发范式与避坑指南
于是我们把 AI 辅助开发当成“外挂脚手架”,用工具链换时间,终于踩着deadline 交卷。下面给出最小可运行示例,全部代码由“本地 LLM + 人工 review” 产出,已在 Jetson Orin 上 24h 连续 infer,内存稳定 1.8G 以下。AI 辅助开发把“写重复代码”的时间压缩到原来的 30%,却换不来“对问题本身的理解”。做工业智能毕设,最怕的不是算法不够 fancy,而是“最后一公里”卡脖子。曾有人把 59 步序列发进来,直接 OOM,加了校验后再没炸过。
2026-01-31 00:18:11
248
原创 Android讯飞ASR集成实战:从语音识别原理到生产环境优化
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-25 00:01:00
643
原创 基于ARM架构的WebRTC与SRS搭建可视对讲系统:从零到生产环境部署指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 05:59:18
172
原创 Android局域网语音聊天实战:基于MediaPlayer的高效实现与避坑指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 05:55:51
399
原创 AI人物构建提示词实战指南:从原理到工程化落地
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 05:36:46
470
原创 AI提示词设计原理:从基础概念到工程化实践
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 04:48:16
243
原创 基于wav2vec的噪声环境语音转录优化实践
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 03:33:38
272
原创 基于Scale-Space Flow的端到端视频压缩优化实战:从原理到生产环境部署
Scale-Space Flow为视频压缩带来了新的可能性,但要真正落地还需要考虑更多工程细节。结合硬件特性进行算子优化开发更高效的自适应熵编码策略探索基于内容的动态码率分配如果你对AI视频处理感兴趣,不妨试试从0打造个人豆包实时通话AI这个实验项目,它能帮助你快速上手AI语音处理相关技术。我在实际操作中发现它的教程非常清晰,即使是初学者也能顺利搭建起完整的实时语音处理流程。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-24 02:18:36
314
原创 Android Studio 代码补全失效?全面解析没有提示词的解决方案
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-24 01:18:50
343
原创 AI VAD实战:基于深度学习的语音活动检测系统设计与优化
内存限制(<10MB)低功耗要求(<100mW)无浮点运算单元优化方向转换为TFLite格式并启用NPU加速尝试WebAssembly部署方案:// Emscripten编译示例想快速体验实时AI语音交互的完整链路?推荐尝试从0打造个人豆包实时通话AI实验,该平台已集成优化的VAD模块,实测在树莓派4B上也能流畅运行。我在实际测试中发现,其Web端部署方案对初学者非常友好,半小时就能完成基础功能搭建。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-24 00:05:41
556
原创 Anaconda Prompt 高效使用指南:从基础操作到环境管理实战
Anaconda Prompt 是 Anaconda 发行版提供的命令行工具,专为 Python 数据科学工作流优化。与普通命令行终端相比,它预配置了 conda 环境路径,可以直接访问 conda 包管理系统。隔离项目依赖:通过虚拟环境避免包版本冲突简化包管理:统一管理 Python 包和系统依赖跨平台一致性:在 Windows/macOS/Linux 上提供相同体验科学计算支持:预装 numpy、pandas 等数据科学包基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。
2026-01-23 05:57:28
479
原创 深入解析iOS 90626错误:如何解决无效Siri支持与自定义意图本地化问题
经过一番研究和实践,我总结出了这个问题的完整解决方案,现在分享给大家。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”
2026-01-23 05:32:43
483
原创 Agentic AI与Generative AI实战入门:从基础概念到物理AI系统搭建
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 04:44:53
356
原创 Android视频超分模型实战:从零搭建到性能优化指南
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 04:26:28
438
原创 实战解析:如何在32单片机中实现高效TTS文字转语音
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 04:01:01
564
原创 Android小米手机语音识别性能优化实战:从API选择到内存管理
通过上述优化,我们在小米手机上实现了显著的性能提升。但这也引出了一个更深层的问题:如何平衡持续语音监听与电池续航的矛盾?这是一个值得深入探讨的话题。如果你对语音识别优化感兴趣,可以试试从0打造个人豆包实时通话AI这个实验项目,它提供了完整的实时语音处理链路实践,我在学习过程中收获颇丰。基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。
2026-01-23 03:27:20
535
原创 AI编程关键词优化实战:如何提升代码生成效率与准确性
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 01:59:27
373
原创 AI生成小说Prompt设计指南:从零构建高效创作模板
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 01:14:10
417
原创 Android端侧语音模型实战:从模型压缩到高效推理的完整方案
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-23 00:23:57
560
原创 AI语音助手多轮对话记忆策略的实战优化与架构设计
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-22 05:43:14
548
原创 基于ASR/TTS与多模态大模型的智能对话系统效率优化实战
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-22 05:15:39
438
原创 视频生成模型的数据标注与管理:从原理到生产环境实践
基于火山引擎豆包大模型,从零搭建一个实时语音通话应用。它不是简单的问答,而是需要你亲手打通 ASR(语音识别)→ LLM(大脑思考)→ TTS(语音合成)的完整 WebSocket 链路。对于想要掌握 AI 原生应用架构的同学来说,这是个绝佳的练手项目。架构理解:掌握实时语音应用的完整技术链路(ASR→LLM→TTS)技能提升:学会申请、配置与调用火山引擎AI服务定制能力:通过代码修改自定义角色性格与音色,实现“从使用到创造”从0到1构建生产级别应用,脱离Demo,点击打开。
2026-01-22 04:56:43
236
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅