2y3u4i5o6p
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
20、算法应用与Java语言发展的深度剖析
本文深入探讨了实用算法在现实生活中的应用,包括动态规划、旅行商问题和排列组合生成技术,并结合Java语言的发展历程,通过与Java语言架构师Brian Goetz的访谈,剖析了Java语言的进化、设计哲学、未来趋势及其成功原因。文章还总结了算法操作步骤、关键知识点表格及Java语言架构师的工作流程,展望了传统计算与机器学习融合、面向对象与函数式编程融合的未来方向,为程序员提供了宝贵的学习与发展建议。原创 2025-09-23 09:03:54 · 37 阅读 · 0 评论 -
18、博弈算法与背包问题的探索
本文深入探讨了四子棋AI的实现与优化,基于Minimax算法并结合Alpha-Beta剪枝技术提升搜索效率,使AI在合理时间内达到更高智能水平。同时,文章详细解析了0/1背包问题的动态规划解法,对比暴力求解的局限性,展示了动态规划在资源优化问题中的高效性。进一步分析了算法复杂度、优化策略及实际应用场景,涵盖游戏AI、资源分配等多个领域,为算法实践提供了系统性指导。原创 2025-09-21 14:12:33 · 32 阅读 · 0 评论 -
17、博弈搜索:井字棋与四子棋的AI实现
本文介绍了如何使用极小极大算法为井字棋和四子棋实现AI对弈。针对井字棋搜索空间小的特点,可直接搜索至终局实现完美策略;而对于复杂的四子棋,则结合评估函数与有限深度搜索进行决策。文章详细解析了位置评估方法、Minimax算法实现及测试,并探讨了α-β剪枝和迭代加深等优化技术,最后对比了两种游戏在搜索空间、评估复杂度和实现难度上的差异,为博弈类AI开发提供了清晰的实践路径。原创 2025-09-20 14:28:57 · 33 阅读 · 0 评论 -
16、神经网络与对抗搜索:原理、问题及应用
本文深入探讨了神经网络与对抗搜索的核心原理、实际应用及优化方法。内容涵盖简单神经网络的实现与验证、基于SIMD和GPU的加速技术、神经网络的局限性与扩展类型,并介绍了其在图像识别、语音识别和推荐系统等领域的广泛应用。同时,文章详细实现了井字棋游戏中的对抗搜索算法,包括极小极大算法的流程与代码,并提出了Alpha-Beta剪枝和迭代加深等优化思路。最后总结了两种技术的关键点并展望了未来研究方向。原创 2025-09-19 12:48:45 · 14 阅读 · 0 评论 -
15、简单神经网络构建与分类应用
本文介绍了基于Java实现的简单神经网络构建过程及其在经典分类问题中的应用。内容涵盖网络结构设计、前向传播与反向传播机制、权重更新策略以及训练与验证流程,并通过mermaid图示展示工作流程。以鸢尾花和葡萄酒两个数据集为例,详细说明了数据预处理、网络构建与分类实现步骤,对比了不同数据集的参数设置与训练效果,最后总结了神经网络在分类任务中的调优建议与未来发展方向。原创 2025-09-18 15:55:37 · 14 阅读 · 0 评论 -
14、人工神经网络入门:构建简单前馈网络
本文介绍了人工神经网络的基本概念与构建方法,重点讲解了简单前馈网络的结构、反向传播算法原理及Java代码实现。内容涵盖神经元与层的类设计、数学基础(如点积和Sigmoid函数)、网络训练流程,并以10×10像素动物图像分类为例展示了实际应用过程。适合初学者快速入门神经网络的核心机制与实践步骤。原创 2025-09-17 11:20:18 · 13 阅读 · 0 评论 -
13、数据聚类与神经网络入门
本文介绍了K-means聚类算法的基本原理、应用实例及其优缺点,并探讨了该算法在初始化、k值选择和离群点处理等方面的问题与扩展方法。同时,文章深入讲解了人工神经网络的生物学基础、基本结构(如神经元和激活函数)、训练流程及常见应用领域。通过具体案例和流程图,帮助读者理解数据聚类与神经网络的核心概念和技术细节,展望了未来在医疗、金融等领域的广泛应用前景。原创 2025-09-16 15:34:42 · 17 阅读 · 0 评论 -
12、遗传算法与K-means聚类算法详解
本文深入探讨了遗传算法与K-means聚类算法的原理、实现与应用。遗传算法通过模拟生物进化过程,适用于求解复杂优化问题,如调度和路径规划,尤其适合寻找‘足够好’的近似解;而K-means作为无监督学习方法,用于将高维数据划分为有意义的簇,强调数据归一化、初始质心选择及k值确定等关键步骤。文章还介绍了两种算法的结合潜力,如用遗传算法优化K-means初始中心,或利用聚类提升遗传算法种群多样性,为实际工程与科研问题提供混合智能解决方案。原创 2025-09-15 16:45:22 · 21 阅读 · 0 评论 -
11、遗传算法的应用与挑战
本文介绍了遗传算法在多个问题中的应用,包括简单方程求解、密码算术问题SEND+MOREMONEY以及列表压缩优化。通过具体Java实现,展示了如何定义染色体、适应度函数、交叉与变异操作,并对比了不同问题的求解效果。文章还分析了遗传算法的挑战,如问题表示困难、参数调优复杂及运行时间不可预测,最后给出了应用遗传算法的操作步骤与未来使用建议,强调其在复杂优化问题中的潜在价值。原创 2025-09-14 13:11:09 · 19 阅读 · 0 评论 -
10、图算法与遗传算法的应用与实现
本文介绍了图算法与遗传算法的应用与实现。图算法广泛应用于交通、通信、社交网络等领域,重点讲解了Dijkstra算法与A*算法的特性及最短路径计算。遗传算法用于解决复杂优化问题,详细阐述了其原理、通用实现方法以及选择策略(轮盘赌与锦标赛)、关键参数配置,并分析了算法的优缺点。结合代码示例和实际应用场景,展示了两种算法在现实世界中的重要价值。原创 2025-09-13 13:27:33 · 16 阅读 · 0 评论 -
9、网络构建成本最小化及路径查找算法
本文介绍了在带权图中解决网络构建成本最小化和最短路径查找问题的方法。通过定义WeightedEdge和WeightedGraph类处理带权图,使用Jarník(Prim)算法查找最小生成树以实现最低成本的网络连接,利用Dijkstra算法求解单源最短路径问题。文章详细阐述了算法原理、Java代码实现、复杂度分析,并结合美国15个最大都市区的超级高铁网络建设案例进行演示,同时探讨了实际应用场景、注意事项及优化建议,为交通与通信网络设计提供了有效的算法支持。原创 2025-09-12 09:10:29 · 11 阅读 · 0 评论 -
8、Java 图论:从基础框架到最短路径搜索
本文介绍了如何在Java中构建图论的基础框架,并利用广度优先搜索(BFS)算法解决无权图中的最短路径问题。以美国主要城市间的超级高铁网络为例,展示了图的建模过程、边与顶点的抽象设计,以及使用泛型实现灵活的图结构。通过复用通用搜索框架,实现了从波士顿到迈阿密的最短路径查找,体现了图论在交通网络等现实问题中的应用价值。原创 2025-09-11 14:11:42 · 16 阅读 · 0 评论 -
7、约束满足问题的多种应用及解决方案
本文探讨了约束满足问题(CSP)在多个领域中的应用与解决方案,涵盖经典谜题如八皇后、单词搜索、SEND + MORE MONEY 算术谜题以及电路板布局问题。通过定义变量、域和约束,并结合回溯搜索算法,展示了如何系统化地求解这些问题。同时介绍了CSP在调度、运动规划、计算生物学和游戏等现实场景中的广泛应用,突出了其作为通用问题求解工具的强大能力。原创 2025-09-10 10:54:15 · 15 阅读 · 0 评论 -
6、搜索问题与约束满足问题详解
本文详细探讨了搜索算法与约束满足问题(CSP)在经典问题中的应用。通过传教士与食人族问题展示了BFS、DFS和A*等搜索算法的实现与求解流程,并以澳大利亚地图着色问题为例,介绍了CSP的建模与回溯搜索求解方法。文章还对比了线性搜索与二分搜索的性能差异,提出了搜索状态计数实验和CSP优化策略,如启发式搜索与约束传播。结合代码示例与流程图,全面解析了算法原理与实际应用场景。原创 2025-09-09 15:00:24 · 19 阅读 · 0 评论 -
5、搜索算法:广度优先搜索、A* 搜索与传教士和食人族问题
本文深入探讨了广度优先搜索(BFS)和A*搜索两种经典搜索算法的原理、实现与应用,通过迷宫求解和传教士与食人族问题展示了算法的实际运用。文章详细分析了BFS如何保证找到最短路径,A*如何利用启发式函数提升搜索效率,并对比了DFS、BFS与A*在时间、空间复杂度及实际性能上的差异。同时,介绍了搜索算法在游戏开发、机器人导航和网络路由等领域的应用场景,为读者提供从理论到实践的全面理解。原创 2025-09-08 11:40:19 · 21 阅读 · 0 评论 -
3、编程中的基础问题与算法实现
本文介绍了编程中的几个基础问题与经典算法实现,涵盖了一次性密码本加密、基于莱布尼茨公式的圆周率计算、使用递归和栈解决汉诺塔问题,以及在生物信息学中对DNA序列的建模与搜索。通过Java代码示例详细讲解了数据处理、加密解密流程、递归思想和比较器的应用,并提供了实际应用场景和练习建议,帮助读者深入理解核心编程技术及其在现实问题中的运用。原创 2025-09-06 12:04:36 · 14 阅读 · 0 评论 -
2、计算机科学基础问题的 Java 实现与优化
本文通过Java实现斐波那契数列的多种解法与基因序列的简单压缩,探讨了递归、记忆化、迭代等算法技术的性能差异,并对代码进行了复杂度分析与优化建议。重点展示了如何利用标准库高效解决经典计算机科学问题,适用于学习算法设计、性能优化及实际应用场景拓展。原创 2025-09-05 16:48:42 · 20 阅读 · 0 评论