人工智能在故障诊断及多准则决策中的应用与发展
1. 人工智能故障诊断概述
随着“智能制造”的不断推进,机械设备的智能化程度日益提高,对设备可靠性提出了更高要求。传统的设备故障诊断方法,通常依靠人工专家观察设备运行状态、测试参数异常变化,并结合长期积累的维护经验来进行故障诊断。但这种方法耗时费力,对维护人员要求高。而且,随着工业领域呈现多模式、不确定性和高密度等特点,传统基于设备工作原理建立的正向数学模型难以准确诊断故障。
因此,人工智能在故障诊断中的应用应运而生。基于人工智能的故障诊断模型从原理驱动转变为数据驱动,通过收集设备正常工况和故障状态的历史数据,构建人工智能网络模型,模拟人类思维机制学习、解释和分析输入数据,自动调整和更新网络权重,以建立准确的诊断模型。
2. 常见的人工智能故障诊断模型
2.1 基于神经网络的诊断模型
神经网络是一种典型的人工智能方法,具有多维和非线性动态特性,能模仿人类的直觉联想和记忆功能,在非线性系统的故障诊断中具有很大优势。其模型由输入层、隐藏层和输出层三层组成:
- 输入层 :直接连接输入数据,获取历史数据信息并标准化后传递给下一层。
- 隐藏层 :用于特征提取,通过调整神经元权重,逐步提取数据中隐藏的拓扑结构特征,使提取的特征逐渐抽象化,最终得到输入数据的平移、旋转和尺度不变特征。
- 输出层 :连接隐藏层并输出模型结果,通过调整权重对不同隐藏层神经元刺激形成正确响应,输出模型的运算结果。
对于故障诊断模型,输入数据通常为设备运行状态
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



