- 博客(7)
- 收藏
- 关注
原创 rdkx5部署yolov11
YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(Joseph Redmon)和阿里-法哈迪(Ali Farhadi)开发。YOLO 于 2015 年推出,因其高速度和高精确度而迅速受到欢迎。2016 年发布的YOLOv2 通过纳入批量归一化、锚框和维度集群改进了原始模型。2018 年推出的YOLOv3 使用更高效的骨干网络、多锚和空间金字塔池进一步增强了模型的性能。
2025-05-25 17:44:55
672
原创 yolo检测目标的使用
YOLO(You Only Look Once)是一种流行的目标检测算法,它的核心思想是将目标检测任务转换为一个单次推断问题。YOLO算法通过一个统一的网络对图像中的目标进行识别和定位,与传统的目标检测方法相比,YOLO在处理整个图像时只需要执行一次前向传递操作,因此速度非常快。此外,YOLO的网络结构比较简单,具有很强的通用性和可扩展性,可以应用于多种不同的目标检测任务。
2024-12-19 17:44:14
467
原创 urdf模型控制与组件仿真实现
在前面的实现中模型都是静态的,但是我们知道,运动与感知是机器人的灵魂,但是我们之前建立的机器人模型中那些传感器都是link连杆而已那么怎么样让机器人动起来和感知呢,这正是本次要实现的内容。
2024-12-12 12:30:42
442
原创 urdf集成gazebo实现
在前面的学习中,我们已经学会了如何用rviz来帮助urdf实现可视化,但是rviz只能显示机器人的模型,在仿真的工程中还会涉及到环境的搭建,此时就要将urdf和gazebo集成了。
2024-12-11 00:16:13
448
原创 使用xacro对urdf进行优化
在前面的实现中,urdf虽然能够很好的实现我们对模型的需要,但是很显然,每次使用urdf对小车的各项数据总修改时,总是需要手动计算部分相关数据,十分麻烦。为了解决这个问题,ros中集成了相关函数,也就是xacro,类似python中的def函数的功能,有xacro封装后,对应的数据便可以自己计算了。
2024-12-10 20:13:32
499
原创 使用urdf实现简易模型
在ros中我们经常要用到的机器人模型不会像我们上上一次演示的一样,大部分机器人都有可活动部分,本次将使用joint标签简单演示演示一下一个小车案例的实现要求:使用urdf制作一个带两个轮子和两个万向轮和一个可以三百六十度旋转摄像头的简易扫地机器人。如图。
2024-12-04 23:06:01
290
原创 使用urdf完成仿真机器人的简单实现
前言:在学习ros系统过程中,购买实际的机器人价格昂贵,为了降低学习成本,ros提供了一系列的仿真系统和环境搭建,渲染可视化工具,在此使用到的时urdf。
2024-12-02 18:05:23
1070
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人