Python 自动化办公实战:批量处理 Excel 文件,效率提升 10 倍
在当今数字化办公时代,处理大量 Excel 文件是许多职场人日常工作中难以避免的任务。手动操作不仅耗时耗力,还容易出错。而 Python 凭借其强大的第三方库,能轻松实现 Excel 文件的批量处理,大幅提升工作效率。本文将通过实际案例,手把手教你使用 Python 自动化处理 Excel 文件,让你从此告别繁琐的手动操作!
一、需求分析
假设我们需要处理一个文件夹下的多个 Excel 文件,每个 Excel 文件都包含销售数据,我们的目标是从这些文件中提取特定列的数据,并将提取后的数据汇总到一个新的 Excel 文件中。具体需求如下:
- 遍历指定文件夹下的所有 Excel 文件。
- 读取每个 Excel 文件中指定工作表(假设都为 Sheet1)的特定列(如 “产品名称” 和 “销售额”)的数据。
- 将提取的数据汇总到一个新的 Excel 文件中,方便后续分析。
二、准备工作
在开始编写代码之前,我们需要安装两个重要的 Python 库:pandas和openpyxl。pandas是一个强大的数据处理库,提供了高效的数据结构和数据分析工具;openpyxl则用于读写 Excel 文件,特别是 xlsx 格式的文件。
使用以下命令安装这两个库:
pip install pandas openpyxl
三、代码实现
下面是实现上述需求的 Python 代码:
im