Python代码编写KDJ指标

        KDJ指标由三部分组成:K值、D值、J值,主要用于分析股票市场的超买超卖状态及股价波动的趋势。博主记录学习编写KDJ指标线

import numpy as np

def calculate_kdj(close_prices, n=9, m1=3, m2=3):
    """
    计算KDJ指标
    :param close_prices: 收盘价序列,np.array 或列表
    :param n: RSV计算周期,默认9天
    :param m1: K的平滑天数,默认3天
    :param m2: D的平滑天数,默认3天
    :return: K, D, J值序列
    """
    # 计算RSV(未成熟随机值)
    delta = close_prices.diff(n-1)
    gain = np.where(delta > 0, delta, 0)
    loss = np.abs(np.where(delta < 0, delta, 0))
    avg_gain = gain.rolling(n).sum() / n
    avg_loss = loss.rolling(n).sum() / n
    rs = avg_gain / avg_loss
    rsv = 100 * (avg_gain / (avg_gain + avg_loss))

    # 初始化K, D, J
    k = np.zeros_like(rsv)
    d = np.zeros_like(rsv)
    j = np.zeros_like(rsv)

    # 计算第一日的K值
    k[:m1] = rsv[:m1]
    d[:m2] = k[:m2]

    # 计算后续的K, D, J值
    for i in range(m1, len(rsv)):
        k[i] = (2/3) * k[i-1] + (1/3) * rsv[i]
        d[i] = (2/3) * d[i-1] + (1/3) * k[i]
        j[i] = 3 * k[i] - 2 * d[i]

    return k, d, j

# 示例数据:假设我们有一系列收盘价
close_prices = np.random.uniform(10, 100, 30).cumsum()  # 生成示例收盘价序列
k_values, d_values, j_values = calculate_kdj(close_prices)

print("K值:", k_values[-1])
print("D值:", d_values[-1])
print("J值:", j_values[-1])

        这段代码首先定义了一个calculate_kdj函数,用于计算给定收盘价序列的KDJ指标。请注意,为了实际应用这段代码,我们需要替换close_prices变量是实际股票或金融产品的历史收盘价数据。此外,根据我们也可以根据具体的需求,对接到实时数据源或调整参数n、m1、m2来优化指标的表现。

        写这段代码段假设我们已经安装好的Python开发环境,也成功安装了Numpy库。如果没有安装,可以通过运行pip install numpy来安装。这段代码是一个起点,根据实际需求,我们可能还需要添加错误处理、数据验证等逻辑,并考虑如何在实际交易环境中集成和测试此指标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十启树

您的认可是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值