目录 一、【MSCA】注意力机制 1.1【MSCA】注意力介绍 1.2【MSCA】核心代码 二、添加【MSCA】注意力机制 2.1STEP1 2.2STEP2 2.3STEP3 2.4STEP4 三、yaml文件与运行 3.1yaml文件 3.2运行成功截图 一、【MSCA】注意力机制 1.1【MSCA】注意力介绍 下图是【MSCA】的结构图,让我们简单分析一下运行过程和优势 处理过程: 多尺度卷积(Multi-Scale Convolution):MSCA 模块的核心是多尺度卷积,它使用不同尺寸的卷积核(如 7×1、11×1、21×1 等)来提取特征。这些不同尺寸的卷积核能够捕捉到不同感受野中的信息,从而增强模型对不同大小目标的检测能力。图中的多个卷积核(d.7x1、d.11x1 等)从不同尺度上提取空间特征,获取从局部到全局的多尺度信息