ES-查询相关和IK分词器

本文详细介绍了Elasticsearch的查询、排序、分页、布尔查询及聚合功能。通过实例展示了如何使用match、bool、sort、from/size等进行数据检索,并探讨了不同查询条件间的逻辑关系。此外,还提到了高亮显示和聚合函数的运用,如avg、max、min和sum。同时,讨论了IK中文分词器的使用,包括ik_max_word和ik_smart的区别。
摘要由CSDN通过智能技术生成

排序查询

创建数据

PUT books/_doc/1
{
  "name":"顾老二",
  "age":30,
  "from": "gu",
  "desc": "皮肤黑、武器长、性格直",
  "tags": ["黑", "长", "直"]
}

PUT books/_doc/2
{
  "name":"大娘子",
  "age":18,
  "from":"sheng",
  "desc":"肤白貌美,娇憨可爱",
  "tags":["白", "富","美"]
}

PUT books/_doc/3
{
  "name":"龙套偏房",
  "age":22,
  "from":"gu",
  "desc":"mmp,没怎么看,不知道怎么形容",
  "tags":["造数据", "真","难"]
}


PUT books/_doc/4
{
  "name":"石头",
  "age":29,
  "from":"gu",
  "desc":"粗中有细,狐假虎威",
  "tags":["粗", "大","猛"]
}

PUT books/_doc/5
{
  "name":"魏行首",
  "age":25,
  "from":"广云台",
  "desc":"仿佛兮若轻云之蔽月,飘飘兮若流风之回雪,mmp,最后竟然没有嫁给顾老二!",
  "tags":["闭月","羞花"]
}

降序

2.1 降序:desc

想到排序,出现在脑海中的无非就是升(正)序和降(倒)序。比如我们查询顾府都有哪些人,并根据age字段按照降序,并且,我只想看nmaeage字段:

GET books/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "sort": [
    {
      "age": {
        "order": "desc"
      }
    }
  ]
}

上例,在条件查询的基础上,我们又通过sort来做排序,根据age字段排序,是降序呢还是升序,由order字段控制,desc是降序。

2.2 升序:asc

那么想要升序怎么搞呢?

GET books/doc/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [  # 这是一个列表,多个排序规则,往后再添加键值对就可以了,排序规则从上往下
    {
      "age": {
        "order": "asc"
      }
    }
  ]
}

上例,想要以升序的方式排列,只需要将order值换为asc就可以了。

三 不是什么数据类型都能排序

那么,你可能会问,除了age,能不能以别的属性作为排序条件啊?来试试:

结果跟我们想象的不一样,报错了!

注意:在排序的过程中,只能使用可排序的属性进行排序。那么可以排序的属性有哪些呢?

  • 数字
  • 日期

其他的都不行!

分页查询

二 分页查询:from/size

我们来看看elasticsearch是怎么将结果分页的:

GET books/doc/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "age": {
        "order": "desc"
      }
    }
  ], 
  "from": 2,
  "size": 1
}

上例,首先以age降序排序,查询所有。并且在查询的时候,添加两个属性fromsize来控制查询结果集的数据条数。

  • from:从哪开始查
  • size:返回几条结果
  • image-20210221131417107

上例中仅有一条数据,那是为啥呢?因为我们现在只有5条数据,从第4条开始查询,就只有1条符合条件,所以,就返回了1条数据。

学到这里,我们也可以看到,我们的查询条件越来越多,开始仅是简单查询,慢慢增加条件查询,增加排序,对返回结果进行限制。所以,我们可以说:对于elasticsearch来说,所有的条件都是可插拔的,彼此之间用,分割。比如说,我们在查询中,仅对返回结果进行限制:

GET lqz/doc/_search
{
  "query": {
    "match_all": {}
  },
  "from": 4,
  "size": 2
}
# 这个的结果就是查询所有然后从第五个开始选取两条,没超出限制的话

布尔查询

一 前言

布尔查询是最常用的组合查询,根据子查询的规则,只有当文档满足所有子查询条件时,elasticsearch引擎才将结果返回。布尔查询支持的子查询条件共4中:

  • must(and)
  • should(or)
  • must_not(not)
  • filter

下面我们来看看每个子查询条件都是怎么玩的。

must

现在,我们用布尔查询所有from属性为gu的数据:

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "from": "gu"
          }
        }
      ]
    }
  }
}

上例中,我们通过在bool属性(字段)内使用must来作为查询条件,那么条件是什么呢?条件同样被match包围,就是fromgu的所有数据。
这里需要注意的是must字段对应的是个列表,也就是说可以有多个并列的查询条件,一个文档满足各个子条件后才最终返回。

结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.6931472,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "4",
        "_score" : 0.6931472,
        "_source" : {
          "name" : "石头",
          "age" : 29,
          "from" : "gu",
          "desc" : "粗中有细,狐假虎威",
          "tags" : [
            "粗",
            "大",
            "猛"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "顾老二",
          "age" : 30,
          "from" : "gu",
          "desc" : "皮肤黑、武器长、性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "龙套偏房",
          "age" : 22,
          "from" : "gu",
          "desc" : "mmp,没怎么看,不知道怎么形容",
          "tags" : [
            "造数据",
            "真",
            "难"
          ]
        }
      }
    ]
  }
}

上例中,可以看到,所有from属性为gu的数据查询出来了。

那么,我们想要查询fromgu,并且age30的数据怎么搞呢?

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "from": "gu"
          }
        },
        {
          "match": {
            "age": 30
          }
        }
      ]
    }
  }
}

上例中,在must列表中,在增加一个age30的条件。

结果如下:

{
  "took" : 8,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 1.287682,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 1.287682,
        "_source" : {
          "name" : "顾老二",
          "age" : 30,
          "from" : "gu",
          "desc" : "皮肤黑、武器长、性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        }
      }
    ]
  }
}

上例,符合条件的数据被成功查询出来了。

注意:现在你可能慢慢发现一个现象,所有属性值为列表的,都可以实现多个条件并列存在

should

那么,如果要查询只要是fromgu或者tags闭月的数据怎么搞?

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "from": "gu"
          }
        },
        {
          "match": {
            "tags": "闭月"
          }
        }
      ]
    }
  }
}

上例中,或关系的不能用must的了,而是要用should,只要符合其中一个条件就返回。

结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 4,
    "max_score" : 0.6931472,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "4",
        "_score" : 0.6931472,
        "_source" : {
          "name" : "石头",
          "age" : 29,
          "from" : "gu",
          "desc" : "粗中有细,狐假虎威",
          "tags" : [
            "粗",
            "大",
            "猛"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "5",
        "_score" : 0.5753642,
        "_source" : {
          "name" : "魏行首",
          "age" : 25,
          "from" : "广云台",
          "desc" : "仿佛兮若轻云之蔽月,飘飘兮若流风之回雪,mmp,最后竟然没有嫁给顾老二!",
          "tags" : [
            "闭月",
            "羞花"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "顾老二",
          "age" : 30,
          "from" : "gu",
          "desc" : "皮肤黑、武器长、性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "龙套偏房",
          "age" : 22,
          "from" : "gu",
          "desc" : "mmp,没怎么看,不知道怎么形容",
          "tags" : [
            "造数据",
            "真",
            "难"
          ]
        }
      }
    ]
  }
}

返回了所有符合条件的结果。

must_not

那么,如果我想要查询from既不是gu并且tags也不是可爱,还有age不是18的数据怎么办?

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "must_not": [
        {
          "match": {
            "from": "gu"
          }
        },
        {
          "match": {
            "tags": "可爱"
          }
        },
        {
          "match": {
            "age": 18
          }
        }
      ]
    }
  }
}

上例中,mustshould都不能使用,而是使用must_not,又在内增加了一个age18的条件。

结果如下:

{
  "took" : 9,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "books",
        "_type" : "doc",
        "_id" : "5",
        "_score" : 1.0,
        "_source" : {
          "name" : "魏行首",
          "age" : 25,
          "from" : "广云台",
          "desc" : "仿佛兮若轻云之蔽月,飘飘兮若流风之回雪,mmp,最后竟然没有嫁给顾老二!",
          "tags" : [
            "闭月",
            "羞花"
          ]
        }
      }
    ]
  }
}

上例中,只有魏行首这一条数据,因为只有魏行首既不是顾家的人,标签没有可爱那一项,年龄也不等于18!
这里有点需要补充,条件中age对应的18你写成整形还是字符串都没啥……

filter

那么,如果要查询fromguage大于25的数据怎么查?

filter需要在bool内部,并且如果是and条件,需要用must,如果使用了should,会认为是should和filter是或者的关系

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "from": "gu"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "gt": 25
          }
        }
      }
    }
  }
}

这里就用到了filter条件过滤查询,过滤条件的范围用range表示,gt表示大于,大于多少呢?是25。

结果如下:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.6931472,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "4",
        "_score" : 0.6931472,
        "_source" : {
          "name" : "石头",
          "age" : 29,
          "from" : "gu",
          "desc" : "粗中有细,狐假虎威",
          "tags" : [
            "粗",
            "大",
            "猛"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "顾老二",
          "age" : 30,
          "from" : "gu",
          "desc" : "皮肤黑、武器长、性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        }
      }
    ]
  }
}

上例中,age大于25的条件都已经筛选出来了。

那么要查询fromguage大于等于30的数据呢?

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "from": "gu"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "gte": 30
          }
        }
      }
    }
  }
}

上例中,大于等于用gte表示。

结果如下:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "顾老二",
          "age" : 30,
          "from" : "gu",
          "desc" : "皮肤黑、武器长、性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        }
      }
    ]
  }
}

那么,要查询age小于25的呢?

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "filter": {
        "range": {
          "age": {
            "lt": 25
          }
        }
      }
    }
  }
}

上例中,小于用lt表示,结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.0,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.0,
        "_source" : {
          "name" : "大娘子",
          "age" : 18,
          "from" : "sheng",
          "desc" : "肤白貌美,娇憨可爱",
          "tags" : [
            "白",
            "富",
            "美"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.0,
        "_source" : {
          "name" : "龙套偏房",
          "age" : 22,
          "from" : "gu",
          "desc" : "mmp,没怎么看,不知道怎么形容",
          "tags" : [
            "造数据",
            "真",
            "难"
          ]
        }
      }
    ]
  }
}

在查询一个age小于等于18的怎么办呢?

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "filter": {
        "range": {
          "age": {
            "lte": 18
          }
        }
      }
    }
  }
}

上例中,小于等于用lte表示。结果如下:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.0,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.0,
        "_source" : {
          "name" : "大娘子",
          "age" : 18,
          "from" : "sheng",
          "desc" : "肤白貌美,娇憨可爱",
          "tags" : [
            "白",
            "富",
            "美"
          ]
        }
      }
    ]
  }
}

要查询fromguage25~30之间的怎么查?

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "from": "gu"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "gte": 25,
            "lte": 30
          }
        }
      }
    }
  }
}

上例中,使用ltegte来限定范围。结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.6931472,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "4",
        "_score" : 0.6931472,
        "_source" : {
          "name" : "石头",
          "age" : 29,
          "from" : "gu",
          "desc" : "粗中有细,狐假虎威",
          "tags" : [
            "粗",
            "大",
            "猛"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "name" : "顾老二",
          "age" : 30,
          "from" : "gu",
          "desc" : "皮肤黑、武器长、性格直",
          "tags" : [
            "黑",
            "长",
            "直"
          ]
        }
      }
    ]
  }
}

那么,要查询fromshengage小于等于25的怎么查呢?其实结果,我们可能已经想到了,只有一条,因为只有盛家小六符合结果。

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "from": "sheng"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "lte": 25
          }
        }
      }
    }
  }
}

结果果然不出洒家所料!

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.6931472,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.6931472,
        "_source" : {
          "name" : "大娘子",
          "age" : 18,
          "from" : "sheng",
          "desc" : "肤白貌美,娇憨可爱",
          "tags" : [
            "白",
            "富",
            "美"
          ]
        }
      }
    ]
  }
}

但是,洒家手一抖,将must换为should看看会发生什么?

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "from": "sheng"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "lte": 25
          }
        }
      }
    }
  }
}

结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 0.6931472,
    "hits" : [
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.6931472,
        "_source" : {
          "name" : "大娘子",
          "age" : 18,
          "from" : "sheng",
          "desc" : "肤白貌美,娇憨可爱",
          "tags" : [
            "白",
            "富",
            "美"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "5",
        "_score" : 0.0,
        "_source" : {
          "name" : "魏行首",
          "age" : 25,
          "from" : "广云台",
          "desc" : "仿佛兮若轻云之蔽月,飘飘兮若流风之回雪,mmp,最后竟然没有嫁给顾老二!",
          "tags" : [
            "闭月",
            "羞花"
          ]
        }
      },
      {
        "_index" : "lqz",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.0,
        "_source" : {
          "name" : "龙套偏房",
          "age" : 22,
          "from" : "gu",
          "desc" : "mmp,没怎么看,不知道怎么形容",
          "tags" : [
            "造数据",
            "真",
            "难"
          ]
        }
      }
    ]
  }
}

结果有点出乎意料,因为龙套偏房和魏行首不属于盛家,但也被查询出来了。那你要问了,怎么肥四?小老弟!这是因为在查询过程中,优先经过filter过滤,因为should是或关系,龙套偏房和魏行首的年龄符合了filter过滤条件,也就被放行了!所以,如果在filter过滤条件中使用should的话,结果可能不会尽如人意!建议使用must代替

注意:filter工作于bool查询内。比如我们将刚才的查询条件改一下,把filterbool中挪出来。

GET lqz/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "from": "sheng"
          }
        }
      ]
    },
    "filter": {
      "range"{
        "age": {
          "lte": 25
        }
      }
    }
  }
}

如上例所示,我们将filterbool平级,看查询结果:

{
  "error": {
    "root_cause": [
      {
        "type": "parsing_exception",
        "reason": "[bool] malformed query, expected [END_OBJECT] but found [FIELD_NAME]",
        "line": 12,
        "col": 5
      }
    ],
    "type": "parsing_exception",
    "reason": "[bool] malformed query, expected [END_OBJECT] but found [FIELD_NAME]",
    "line": 12,
    "col": 5
  },
  "status": 400
}

结果报错了!所以,filter工作位置很重要。

小结:

  • must:与关系,相当于关系型数据库中的and
  • should:或关系,相当于关系型数据库中的or
  • must_not:非关系,相当于关系型数据库中的not
  • filter:过滤条件。
  • range:条件筛选范围。
  • gt:大于,相当于关系型数据库中的>
  • gte:大于等于,相当于关系型数据库中的>=
  • lt:小于,相当于关系型数据库中的<
  • lte:小于等于,相当于关系型数据库中的<=

查询结果 过滤:_source

在未来,一篇文档可能有很多的字段,每次查询都默认给我们返回全部,在数据量很大的时候,是的,比如我只想查姑娘的手机号,你一并给我个喜好啊、三围什么的算什么?
所以,我们对结果做一些过滤,清清白白的告诉elasticsearch

GET books/doc/_search
{
  "query": {
    "match": {
      "name":"顾老二"
    }
  }
}

GET books/doc/_search
{
  "query": {
    "match": {
      "name":"顾老二"
    }
  },
  "_source": ["name","age"]
}

image-20210221141046275

image-20210221140927221

高亮显示

如果返回的结果集中很多符合条件的结果,那怎么能一眼就能看到我们想要的那个结果呢?比如下面网站所示的那样,我们搜索elasticsearch,在结果集中,将所有elasticsearch高亮显示?

image-20210221141335318

如上图我们搜索一样。我们该怎么做呢?

GET books/doc/_search
{
  "query": {
    "match": {
      "tags": "粗"
    }
  },
  "highlight": {
  "fields": {
    "from":{},
    "tags":{}
  }
  }
}

上例中,我们使用highlight属性来实现结果高亮显示,需要的字段名称添加到fields内即可,elasticsearch会自动帮我们实现高亮。

image-20210221142113832

自定义高亮显示

但是,你可能会问,我不想用em标签, 我这么牛逼,应该用个b标签啊!好的,elasticsearch同样考虑到你很牛逼,所以,我们可以自定义标签。

GET books/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "highlight": {
    "pre_tags": "<b class='key' style='color:red'>",  # 在结果之前
    "post_tags": "</b>",  # 在结果之后
    "fields": {
      "from": {}
    }
  }
}

上例中,在highlight中,pre_tags用来实现我们的自定义标签的前半部分,在这里,我们也可以为自定义的标签添加属性和样式。post_tags实现标签的后半部分,组成一个完整的标签。至于标签中的内容,则还是交给fields来完成。

image-20210221142602857

聚合函数

聚合函数大家都不陌生,elasticsearch中也没玩出新花样,所以,这一章相对简单,只需要记得:

  • avg
  • max
  • min
  • sum

以及各自的用法即可。先来看求平均。

svg

GET books/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {  # 聚合函数aggressive
    "my_avg": {  # 结果别名
      "avg": {  # 聚合方法
        "field": "age"  # 字段
      }
    }
  },
  "_source": ["name", "age"]  # 过滤
}

image-20210221143249371

max,min.sum

  "aggs": {  # 聚合函数aggressive
    "my_max": {  # 结果别名
      "max": {  # 聚合方法
        "field": "age"  # 字段
      }
    }
  },
    "aggs": {  # 聚合函数aggressive
    "my_min": {  # 结果别名
      "min": {  # 聚合方法
        "field": "age"  # 字段
      }
    }
  },
    "aggs": {  # 聚合函数aggressive
    "my_sum": {  # 结果别名
      "sum": {  # 聚合方法
        "field": "age"  # 字段
      }
    }
  },

分组查询

现在我想要查询所有人的年龄段,并且按照15~20,20~25,25~30分组,并且算出每组的平均年龄。

分析需求,首先我们应该先把分组做出来。

GET books/doc/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_group": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 15,
            "to": 20
          },
          {
            "from": 20,
            "to": 25
          },
          {
            "from": 25,
            "to": 30
          }
        ]
      }
    }
  }
}

上例中,在aggs的自定义别名age_group中,使用range来做分组,field是以age为分组,分组使用ranges来做,fromto是范围,我们根据需求做出三组。

现在我想要查询所有人的年龄段,并且按照15~20,20~25,25~30分组,并且算出每组的平均年龄。

分析需求,首先我们应该先把分组做出来。

image-20210221150503276

返回的结果中可以看到,已经拿到了三个分组。doc_count为该组内有几条数据,此次共分为三组,查询出4条内容。还有一条数据的age属性值是30,不在分组的范围内!

那么接下来,我们就要对每个小组内的数据做平均年龄处理。

GET books/doc/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_group": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 15,
            "to": 20
          },
          {
            "from": 20,
            "to": 25
          },
          {
            "from": 25,
            "to": 30
          }
        ]
      },
      "aggs": {
        "my_avg": {
          "avg": {
            "field": "age"
          }
        }
      }
    }
  }
}

上例中,在分组下面,我们使用aggsage做平均数处理,这样就可以了。

image-20210221150538583

在结果中,我们可以清晰的看到每组的平均年龄(my_avgvalue中)。

注意:聚合函数的使用,一定是先查出结果,然后对结果使用聚合函数做处理

小结:

  • avg:求平均
  • max:最大值
  • min:最小值
  • sum:求和

欢迎斧正,that’s all

IK中文分词器

#1 github下载相应版本
https://github.com/medcl/elasticsearch-analysis-ik/releases?after=v7.5.2

2 解压到es的plugin目录下

3 重启es

ik_max_word 和 ik_smart 什么区别?

ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种 可能的组合,适合 Term Query;

ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”,适合 Phrase 查询。

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "上海自来水来自海上"  
}
# text字段会分词,keyword不会分词。所以在建立i、映射关系(mapping)要先想好这个字段需不需要细分

image-20210221151905758

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值