左偏树的应用(罗马游戏)

罗马游戏 - 洛谷

题解:题目指向并查集的趋向十分明显,对于合并和删除,我们运用左偏树进行实现

左偏树的具体性质还包括:

  • 每个节点的键值小于或等于它的左右子节点的键值。
  • 如果节点的左子树和右子树均为空,则该节点被称为外节点,其距离定义为0。
  • 一个节点的距离等于它的右子节点的距离加上1。

左偏树的节点通常包含以下信息:

  • 键值(key value):用于比较节点大小的唯一标识符。
  • 距离(distance):描述节点到其最近的外节点的最短路径长度。
  •                                                                                                           ——摘自百度百科

回顾完毕!进入代码解析环节!!

1、并查集构建(针对加点和优化路径)

int find(int x)
{
	if(f[x]==x)
	{
		return x;
	}else return f[x]=find(f[x]);
}

2、左偏树的更新

int merge(int x,int y)
{
	if(!x||!y)
	{
		return x+y;//如果有一个为空,返回
	}
	if(a[x]>a[y]||(a[x]==a[y]&&x>y))
	{
		swap(x,y);//x为小的那个
	}
	rs[x]=merge(rs[x],y);//对x的右子树进行维护
	if(d[ls[x]]<d[rs[x]])
	{
		swap(ls[x],rs[x]);//如果左右子树不符合规定,交换
	}
	d[x]=d[rs[x]]+1;//用右子树与节点dis差为1的性质进行赋值
	return x;
}

3、主函数进行判断

while(m--)
	{
		cin>>k; 
		if(k=='M')
		{
			int x,y;
			scanf("%d%d",&x,&y);
			if(vis[x]||vis[y])//如果一个死了,跳过
			{
				continue;
			}
			x=find(x);
			y=find(y);
			if(x==y)
			{
				continue;
			}
			f[x]=f[y]=merge(x,y);
		}else{
			int x;
			scanf("%d",&x);
			if(vis[x])//如果一个死了,输出0
			{
				cout<<0<<endl;
				continue;
			}
			x=find(x);
			cout<<a[x]<<endl;
			vis[x]=1;
			f[x]=f[ls[x]]=f[rs[x]]=merge(ls[x],rs[x]);//对堆进行处理
			ls[x]=rs[x]=d[x]=0;//归零
		}
	}

代码:

#include<bits/stdc++.h> 
using namespace std;
const int INF=1e6;
int n,m,a[INF],ls[INF],rs[INF],d[INF],vis[INF],f[INF];
char k;
int find(int x)
{
	if(f[x]==x)
	{
		return x;
	}else return f[x]=find(f[x]);
}
int merge(int x,int y)
{
	if(!x||!y)
	{
		return x+y;
	}
	if(a[x]>a[y]||(a[x]==a[y]&&x>y))
	{
		swap(x,y);
	}
	rs[x]=merge(rs[x],y);
	if(d[ls[x]]<d[rs[x]])
	{
		swap(ls[x],rs[x]);
	}
	d[x]=d[rs[x]]+1;
	return x;
}
int main()
{
	scanf("%d",&n);
	d[0]=-1;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		f[i]=i;
	}
	scanf("%d",&m);
	while(m--)
	{
		cin>>k; 
		if(k=='M')
		{
			int x,y;
			scanf("%d%d",&x,&y);
			if(vis[x]||vis[y])
			{
				continue;
			}
			x=find(x);
			y=find(y);
			if(x==y)
			{
				continue;
			}
			f[x]=f[y]=merge(x,y);
		}else{
			int x;
			scanf("%d",&x);
			if(vis[x])
			{
				cout<<0<<endl;
				continue;
			}
			x=find(x);
			cout<<a[x]<<endl;
			vis[x]=1;
			f[x]=f[ls[x]]=f[rs[x]]=merge(ls[x],rs[x]);
			ls[x]=rs[x]=d[x]=0;
		}
	}
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值