题解:题目指向并查集的趋向十分明显,对于合并和删除,我们运用左偏树进行实现
左偏树的具体性质还包括:
- 每个节点的键值小于或等于它的左右子节点的键值。
- 如果节点的左子树和右子树均为空,则该节点被称为外节点,其距离定义为0。
- 一个节点的距离等于它的右子节点的距离加上1。
左偏树的节点通常包含以下信息:
- 键值(key value):用于比较节点大小的唯一标识符。
- 距离(distance):描述节点到其最近的外节点的最短路径长度。
- ——摘自百度百科
回顾完毕!进入代码解析环节!!
1、并查集构建(针对加点和优化路径)
int find(int x)
{
if(f[x]==x)
{
return x;
}else return f[x]=find(f[x]);
}
2、左偏树的更新
int merge(int x,int y)
{
if(!x||!y)
{
return x+y;//如果有一个为空,返回
}
if(a[x]>a[y]||(a[x]==a[y]&&x>y))
{
swap(x,y);//x为小的那个
}
rs[x]=merge(rs[x],y);//对x的右子树进行维护
if(d[ls[x]]<d[rs[x]])
{
swap(ls[x],rs[x]);//如果左右子树不符合规定,交换
}
d[x]=d[rs[x]]+1;//用右子树与节点dis差为1的性质进行赋值
return x;
}
3、主函数进行判断
while(m--)
{
cin>>k;
if(k=='M')
{
int x,y;
scanf("%d%d",&x,&y);
if(vis[x]||vis[y])//如果一个死了,跳过
{
continue;
}
x=find(x);
y=find(y);
if(x==y)
{
continue;
}
f[x]=f[y]=merge(x,y);
}else{
int x;
scanf("%d",&x);
if(vis[x])//如果一个死了,输出0
{
cout<<0<<endl;
continue;
}
x=find(x);
cout<<a[x]<<endl;
vis[x]=1;
f[x]=f[ls[x]]=f[rs[x]]=merge(ls[x],rs[x]);//对堆进行处理
ls[x]=rs[x]=d[x]=0;//归零
}
}
代码:
#include<bits/stdc++.h>
using namespace std;
const int INF=1e6;
int n,m,a[INF],ls[INF],rs[INF],d[INF],vis[INF],f[INF];
char k;
int find(int x)
{
if(f[x]==x)
{
return x;
}else return f[x]=find(f[x]);
}
int merge(int x,int y)
{
if(!x||!y)
{
return x+y;
}
if(a[x]>a[y]||(a[x]==a[y]&&x>y))
{
swap(x,y);
}
rs[x]=merge(rs[x],y);
if(d[ls[x]]<d[rs[x]])
{
swap(ls[x],rs[x]);
}
d[x]=d[rs[x]]+1;
return x;
}
int main()
{
scanf("%d",&n);
d[0]=-1;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
f[i]=i;
}
scanf("%d",&m);
while(m--)
{
cin>>k;
if(k=='M')
{
int x,y;
scanf("%d%d",&x,&y);
if(vis[x]||vis[y])
{
continue;
}
x=find(x);
y=find(y);
if(x==y)
{
continue;
}
f[x]=f[y]=merge(x,y);
}else{
int x;
scanf("%d",&x);
if(vis[x])
{
cout<<0<<endl;
continue;
}
x=find(x);
cout<<a[x]<<endl;
vis[x]=1;
f[x]=f[ls[x]]=f[rs[x]]=merge(ls[x],rs[x]);
ls[x]=rs[x]=d[x]=0;
}
}
}