HammingCode C++ partial functionality implementation.(海明码C++部分实现,C++,海明码,Hamming code,纠错编码)

HammingCode C++ partial functionality implementation.

HammingCode

Preknowledge

&,|,^

The priority of operator & is lower than != in C++,C#(maybe).

In fact, for digit operators and logic operators:

|| < && < | < ^ < & < != = == < other logic operators < << = >>

So, make sure of using parenthesis: ()

Under csi (C# script interactive):

> (5+1) & 5 != 0
(1,1): error CS0019: Operator '&' cannot be applied to operands of type 'int' and 'bool'
> 5 & (5+1) != 0
(1,1): error CS0019: Operator '&' cannot be applied to operands of type 'int' and 'bool'
> (5 & (5+1)) != 0 
true

The ^ operator can be used as ! operator to binary digits by $digit ^ 1,and as copying to binary digits by $digit ^ 0:

Under csi:

> 0^1
1
> 1^1
0
> 0^0
0
> 1^0
1

The & operator can be used as judging whether the number is the power of 2.

bool isPowerOf2(int num) {return (num & (num - 1)) == 0;}

Under csi:

> bool isPowerOf2(int num) {return (num & (num - 1)) == 0;}
> isPowerOf2(8)
true

<<

Operator << can be used as judging whether the i-th (starts from 0) digit of a number is 1:

bool isDigitTrue(int num, int digit) {return (1<<(digit) & num) != 0;}

Under csi:

> 1 << 6 & 0b10101001
0
> 1 << 5 & 0b10101001
32
> (1 << 5 & 0b10101001) != 0
true

> bool isDigitTrue(int num, int digit) {return (1<<(digit) & num) != 0;}
> isDigitTrue(0b10101001,5) 
true

Hamming code function

n + k ≤ 2 k − 1 ( n : Raw data digitN , k : Correction digitN ) n + k \leq 2^k - 1 (n: \text{Raw data digitN}, k: \text{Correction digitN}) n+k2k1(n:Raw data digitN,k:Correction digitN)
Suppose data : 1011 \text{Suppose data}: 1011 Suppose data:1011

D 4 = 1 , D 3 = 0 , D 2 = 1 , D 1 = 1 D_4 = 1, D_3 = 0, D_2 = 1, D_1 = 1 D4=1,D3=0,D2=1,D1=1
Hamming code:
D 4 , D 3 , D 2 , H 3 , D 1 , H 2 , H 1 1 , 0 , 1 , _ , 1 , _ , _ D_4,D_3,D_2,H_3,D_1,H_2,H_1 \\ 1,0,1,\_,1,\_,\_ D4,D3,D2,H3,D1,H2,H11,0,1,_,1,_,_

Implementation

#include "vector"
#include "string"
#include "iostream"
#include "algorithm"
//#include "bits/stdc++.h"
namespace HammingCode
{
    int getCorrectionCnt(int dataSize, int correctionCnt = 0)
    {
        // Obtain hamming code digitN: n + k \leq 2^k - 1 (n: Raw data digitN, k: Correction digitN)
        return (1 << correctionCnt) < dataSize + correctionCnt + 1 ? getCorrectionCnt(dataSize, ++correctionCnt) : correctionCnt;
    }
    int xorOperation(const int pos, const std::vector<int> encodedData)
    {
        int xorResult = 0;
        // Traverse the encoded vector, operating xor operation with specific digits.
        for (int i = 0; i < encodedData.size(); i++)
        {
            if ((pos & (i + 1)) != 0)
            {
                // If the corresponding digit of index is 1, do the XORs.
                // Remind that the correction digit initial value is 0, which does not contribute to the XOR operation.
                // Remind that the xorResult initial value is 0, which still does not contribute to the XOR operation and ensures the operation to include the correction digit.
                xorResult ^= encodedData[encodedData.size() - 1 - i];
            }
        }
        return xorResult;
    }
    std::vector<int> encodeData(const std::vector<int> binarydata)
    {
        int datalength = binarydata.size();
        int correctionCnt = getCorrectionCnt(datalength);
        int encodedLength = datalength + correctionCnt;
        std::vector<int> encodedData(encodedLength, 0);
        // Traverse the encodedData vector.
        for (int i = 0, j = 0; i < encodedLength; i++)
        {
            // If the (i+1)-th digit is not power of 2.
            if (((i + 1) & i) != 0)
            {
                // Copy data.
                encodedData[encodedLength - 1 - i] = binarydata[datalength - 1 - (j++)];
            }
        }
        // Traverse the correctionDigits
        for (int i = 0; i < correctionCnt; i++)
        {
            // The correctionCode's digit position (starts from 1).
            int correctionPos = 1 << i;
            // The val in data vector.
            int correctionDigitVal = 0;
            // Traverse the encoded vector, operating xor operation with specific digits.
            correctionDigitVal = xorOperation(correctionPos, encodedData);
            encodedData[encodedLength - 1 - (correctionPos - 1)] = correctionDigitVal;
        }
        return encodedData;
    }

    std::vector<int> decodeDataAndCorrect(std::vector<int> encodedData)
    {
        int encodedLength = encodedData.size();
        int correctionCnt = 0;
        while ((1 << correctionCnt) < encodedLength + 1)
        {
            correctionCnt++;
        }
        int datalength = encodedLength - correctionCnt;
        int errorCode = 0;
        // Traverse the correctionDigits
        for (int i = 0; i < correctionCnt; i++)
        {
            // The correctionCode's digit position (starts from 1).
            int correctionPos = 1 << i;
            // The val in data vector.
            int xorResult = 0;
            xorResult = xorOperation(correctionPos, encodedData);
            // Amazing huh?
            errorCode |= xorResult << i;
        }
        // If errorCode is not 0, correct the data.
        if (errorCode != 0)
        {
            // The error code is the position of the error bit.
            encodedData[encodedLength - 1 - (errorCode - 1)] ^= 1;
        }
        return encodedData;
    }
}

int main()
{
    std::vector<int> encodedData = HammingCode::encodeData(std::vector<int>{1, 0, 1, 0});
    std::cout << "encodedData:\n";
    std::for_each(encodedData.begin(), encodedData.end(), [](int val)
                  { std::cout << val; });

    encodedData[2] ^= 1;
    std::vector<int> dataToCorrect = encodedData;
    //     std::cout << "dataToCorrect:\n";
    // std::for_each(dataToCorrect.begin(), dataToCorrect.end(), [](int val)
    //               { std::cout << val; });

    std::vector<int> correctedData = HammingCode::decodeDataAndCorrect(dataToCorrect);
    std::cout << "\ncorrectedData:\n";
    std::for_each(correctedData.begin(), correctedData.end(), [](int val)
                  { std::cout << val; });

    return 0;
}

可能是错的,明天再改咯。
Updated at 2024/8/5,11:39.
Fixed the length calculate algorithm in correct function.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rabxs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值