题目传送-BZOJ4025
题意:
有一张\(n\)个节点的无向图,其中边\(i\)在\(s_i\)出现,\(e_i\)结束,并连接着节点\(x,y\).
并保证\(s_i < e_i \le T\),要求对于每个时间\(t\le T\)输出此时的图是否是二分图。
\(n\le100000,m\le200000,T\le100000\)
题解:
这是道好题,考到了线段树(分治)的思想,听说也叫整体二分?
考虑如何做一个区间(时间)[L,R]中的所有答案:
显然我们只考虑与这个区间有交集的边
分两种:完全覆盖这个区间,部分覆盖这个区间。
显然我们可以毫无顾虑的把第一类的边都加上
此时如果已经不是二分图了,那显然直接GG了
然后对于其它边我们只要递归下去处理就行了
如何判断二分图并支持对图的修改:
考虑按秩合并的带权并查集,这就不多说了
复杂度的证明:
空间:
观察发现每个区间的处理需要有一个边集
而每条边最多能在log个区间中出现(线段树的思想)
那么总共的空间需求就是\(m*log_2T\)的
时间:
同样一条边只能与log个区间相关,也就是说它只能被删加log次
所以复杂度也是\(m*log_2T\)的?
不知道我这样分析对不对,貌似@zhouzhendong大佬说这是\(log^2\)的
过程:
已更新至我都错题集-updating
并查集相关错误
代码:
const int N=100010,M=200010;
int n,m,T;
struct EDGE {
int x,y,s,t;
inline void in() {
read(x); read(y); read(s); read(t); ++s;
}
};
int ans[N];
int cnt=0;
namespace DSU {
int val[N],dep[N],fat[N];
struct TMP {
int fx,fy,dx,dy;
};//x merge to y -> dep[fx]<dep[fy]
stack<TMP> sta;
inline void Init() {
for(int i=1;i<=n;i++)
fat[i]=i,dep[i]=1,val[i]=0;
}
inline pii father(int x) {
int ret=0;
while(x!=fat[x]) ret^=val[x],x=fat[x];
return mp(x,ret);
}
inline bool Merge(int x,int y) {
pii tx=father(x),ty=father(y);
int fx=tx.F,fy=ty.F,vx=tx.S,vy=ty.S;
if(dep[fx]>dep[fy]) swap(fx,fy);
int v=1^vx^vy;
if(fx==fy) return v==0;
sta.push((TMP) {fx,fy,dep[fx],dep[fy]});
fat[fx]=fy; val[fx]=v;
dep[fy]=max(dep[fy],dep[fx]+1);
return true;
}
inline void Split(int to) {
--cnt; assert(cnt>=0);
while((int)sta.size()!=to) {
// puts("?");
assert(!sta.empty());
TMP tmp=sta.top(); sta.pop();
int fx=tmp.fx,fy=tmp.fy,dx=tmp.dx,dy=tmp.dy;
dep[fx]=dx; dep[fy]=dy; fat[fx]=fx; val[fx]=0;
}
}
}
vector<EDGE> E;
void Solve(int S,int T,vector<EDGE> &E) {
assert(S<=T);
if((int)E.size()==0) {
for(int i=S;i<=T;i++)
ans[i]=1;
return;
}
++cnt;
vector<EDGE> EL,ER; EL.clear(); ER.clear();
int top=DSU::sta.size(),mid=(S+T)>>1;
for(int i=0;i<(int)E.size();i++) {
EDGE e=E[i];
if(e.s<=S && T<=e.t) {
if(!DSU::Merge(e.x,e.y)) {
// puts("???");
for(int j=S;j<=T;j++)
ans[j]=0;
DSU::Split(top); return;
}
} else {
if(e.s<=mid) EL.push_back(e);
if(e.t> mid) ER.push_back(e);
}
}
if(S==T) {ans[S]=1; DSU::Split(top); return;}
Solve(S,mid,EL); Solve(mid+1,T,ER);
DSU::Split(top); return;
}
signed main() {
// freopen("10.in","r",stdin);
// freopen("my.out","w",stdout);
mem(ans,-1);
read(n); read(m); read(T);
DSU::Init();
for(int i=1;i<=m;i++) {
EDGE e; e.in(); E.push_back(e);
}
Solve(1,T,E);
// for(int i=1;i<=n;i++) printf("%d ",ans[i]);
for(int i=1;i<=n;i++) puts(ans[i] ? "Yes" : "No");
return 0;
}
/*
3 3 3
1 2 0 2
2 3 0 3
1 3 1 2
*/
用时:1h