一、概率论基础复习
1.1 概率定义
概率定义为一件事发生的可能性(例如:扔出一个硬币,结果头像朝上的可能性是多少)
P(X) :取值在[0,1]之间
1.2 案列:判断女神对你的喜欢情况
问题如下:
1. ⼥神喜欢的概率?
2. 职业是程序员并且体型匀称的概率?
3. 在⼥神喜欢的条件下, 职业是程序员的概率?
4. 在⼥神喜欢的条件下, 职业是程序员、 体重超重的概率?
计算结果为下:
P(喜欢) = 4/7
P(程序员, 匀称) = 1/7(联合概率)
P(程序员|喜欢) = 2/4 = 1/2(条件概率) #在女神喜欢的条件下,找职业是程序员的
P(程序员, 超重|喜欢) = 1/4 #在女神喜欢的条件下,找职业是程序员且超重的
思考题: 在小明是产品经理并且体重超重的情况下, 如何计算小明被女神喜欢的概率?
即P(喜欢|产品, 超重) = ?
此时我们需要用到朴素贝叶斯进行求解, 在讲解贝叶斯公式之前,首先复习⼀下联合概率、 条件概率和相互独立的概念。
1.3 联合概率、 条件概率与相互独立
联合概率: 包含多个条件, 且所有条件同时成立的概率
记作: P(A,B)
条件概率: 就是事件A在另外⼀个事件B已经发生条件下的发⽣概率
记作: P(A|B)
相互独⽴: 如果P(A, B) = P(A)P(B), 则称事件A与事件B相互独⽴。
二、贝叶斯公式
2.1、公式介绍
2.2、案例分析
那么思考题就可以套用贝叶斯公式这样来解决:
P(喜欢|产品, 超重) = P(产品, 超重|喜欢)P(喜欢)/P(产品, 超重)
上式中:
- P(产品, 超重|喜欢)和P(产品, 超重)的结果均为0, 导致无法计算结果。 这是因为我们的样本量太少了, 不具有代表性。
- 本来现实⽣活中, 肯定是存在职业是产品经理并且体重超重的⼈的, P(产品, 超重)不可能为0;
- 而且事件“职业是产品经理”和事件“体重超重”通常被认为是相互独立的事件, 但是, 根据我们有限的7个样本计算“P(产品, 超重) = P(产品)P(超重)”不成立。
而朴素贝叶斯可以帮助我们解决这个问题。
- 朴素贝叶斯, 简单理解, 就是假定了特征与特征之间相互独立的贝叶斯公式。
- 也就是说, 朴素贝叶斯, 之所以朴素, 就在于假定了特征与特征相互独立。
所以, 思考题如果按照朴素贝叶斯的思路来解决, 就可以是
那么这个公式如果应⽤在⽂章分类的场景当中, 我们可以这样看:
公式可以为三部分:
如果计算两个类别概率比较:
所以我们只要比较前⾯的大小就可以, 得出谁的概率大
2.3、文章分类计算
需求: 通过前四个训练样本(⽂章) , 判断第五篇⽂章, 是否属于China类
计算结果如下:
P(C|Chinese, Chinese, Chinese, Tokyo, Japan)
=P(Chinese, Chinese, Chinese, Tokyo, Japan|C) * P(C) / P(Chinese, Chinese, Chinese, Tokyo, Japan)
= P(Chinese|C)^3 * P(Tokyo|C) * P(Japan|C) * P(C) / [P(Chinese)^3 * P(Tokyo) * P(Japan)]
# 这个⽂章是需要计算是不是China类, 是或者不是最后的分母值都相同:
# ⾸先计算是China类的概率:
P(Chinese|C) = 5/8
P(Tokyo|C) = 0/8
P(Japan|C) = 0/8
# 接着计算不是China类的概率:
P(Chinese|C) = 1/3
P(Tokyo|C) = 1/3
P(Japan|C) = 1/3
特征词个数是指YES和NO中不重复的词个数(Chinese 、Beijing、 Shanghai、 Macao 、Tokyo、Japan) = 8
# 这个⽂章是需要计算是不是China类:
首先计算是China类的概率: 0.0003
P(Chinese|C) = 5/8 --> 6/14
P(Tokyo|C) = 0/8 --> 1/14
P(Japan|C) = 0/8 --> 1/14
接着计算不是China类的概率: 0.0001
P(Chinese|C) = 1/3 -->(经过拉普拉斯平滑系数处理) 2/9
P(Tokyo|C) = 1/3 --> 2/9
P(Japan|C) = 1/3 --> 2/9
结论:因为 属于China类的概率 > 不属于China类的概率, 所以属于China类的概率。
三、案列:商品评论情感分析
3.1 api介绍
- sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
朴素贝叶斯分类
alpha: 拉普拉斯平滑系数
3.2 商品评论情感分析
3.3 分析步骤
- 1) 获取数据
- 2) 数据基本处理
2.1) 取出内容列, 对数据进⾏分析
2.2) 判定评判标准
2.3) 选择停⽤词
2.4) 把内容处理, 转化成标准格式
2.5) 统计词的个数
2.6) 准备训练集和测试集
- 3) 模型训练
- 4) 模型评估
3.4 代码实现
- 1) 获取数据
- 2) 数据基本处理
- 3) 模型训练
- 4) 模型评估
应用说明:https://ai.baidu.com/tech/nlp_apply/sentiment_classify
完整代码: 等打包
参考:黑马程序员课程